galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the discrete logarithm of the array \(x\) base \(\beta\).

Parameters:
base: ElementLike | ArrayLike | None = None

A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Slower performance

If the FieldArray is configured to use lookup tables (ufunc_mode == "jit-lookup") and this method is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than using lookup tables).

Returns:

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([104, 131,  91,  74,  90,  57, 191,  50,   5, 116], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([232, 218, 148, 106,  48, 196, 220,  51,   5,  84])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([               α^2 + α + 2,          α^4 + α^2 + α + 2,
       α^4 + α^3 + α^2 + α + 1,               α^3 + 2α + 1,
               2α^4 + α^3 + 2α, α^4 + 2α^3 + 2α^2 + 2α + 1,
     α^4 + 2α^3 + α^2 + 2α + 2,             2α^3 + α^2 + α,
         2α^4 + 2α^3 + α^2 + 2,                α^4 + α + 1], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([209, 229,  64, 198, 234, 184,  57, 102, 146, 221])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([ α^41,  α^19, α^156, α^199,  α^73, α^195, α^213, α^217, α^150, α^197],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([ 41,  19, 156, 199,  73, 195, 213, 217, 150, 197])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([ 29, 161,  10,   5, 211,  73,   9, 183, 112,  39])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([ 29, 161,  10,   5, 211,  73,   9, 183, 112,  39])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([ 29, 161,  10,   5, 211,  73,   9, 183, 112,  39])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(67, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([ 39, 211, 153, 201,  97, 135,  67, 113,  45, 227, 137,  13, 151,
        51, 145,  65, 107,  23,  21, 191, 175, 213, 103, 199,  15, 189,
        25, 219, 233, 157,   1,  27, 237, 207,  59, 223, 171,  37, 133,
       239,  87,  91,   9,  61,  43,  29, 111,  41,   3, 155,  81, 163,
       119,  49,  69,  79, 173, 127, 101,  95,  73,  57,  93, 179, 181,
        47, 125, 241, 161, 203, 131,  17,  85, 159, 225,   7, 235, 105,
       205, 167, 109, 221,  71, 141, 183, 129,  35, 139, 185, 123,  53,
        31,  19, 147,   5, 115, 177, 169, 197,  75,  83, 149, 217, 117,
       195, 193, 215, 229,  89,  63])

In [29]: np.all(bases ** i == x)
Out[29]: True
In [30]: x = GF.Random(low=1); x
Out[30]: GF(1, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

In [33]: np.all(bases ** i == x)
Out[33]: True
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^42, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([ 42, 190, 202, 142,  30, 164, 128,  10, 216, 170, 222,  14, 144,
       148, 212,  70,  78,  62,   4,  94, 114,   6, 204,  84,  72,  36,
       120, 180, 102,  76, 150, 178, 218,  74, 138,  54, 240, 226, 106,
        34, 224,  98, 140, 196, 158, 236, 194, 100, 208,  18,  50,   8,
       184,  90, 186, 234,  56, 174, 146, 214,  60,  80, 156, 230,  46,
        32, 116,  92, 192, 200,  48, 130, 166, 134, 112,  82, 160,  20,
        16, 124, 136, 238,   2,  96, 104, 232, 168,  38, 162,  58, 206,
        52, 188,  28,  24,  68, 172, 182,  26, 118, 108,  86, 122, 126,
       210, 152,  64, 228,  40,  12])

In [37]: np.all(bases ** i == x)
Out[37]: True