galois.ReedSolomon.encode(message: ArrayLike, output: 'codeword' | 'parity' = 'codeword') FieldArray

Encodes the message m into the codeword c.

Shortened codes

For the shortened [ns, ks, d] code (only applicable for systematic codes), pass ks symbols into encode() to return the ns-symbol message.

Parameters:
message: ArrayLike

The message as either a k-length vector or (N,k) matrix, where N is the number of messages. For systematic codes, message lengths less than k may be provided to produce shortened codewords.

output: 'codeword' | 'parity' = 'codeword'

Specify whether to return the codeword or parity symbols only. The default is "codeword".

Returns:

If output="codeword", the codeword as either a n-length vector or (N,n) matrix. If output="parity", the parity symbols as either a nk-length vector or (N,nk) matrix.

Notes

The message vector m is a member of GF(q)k. The corresponding message polynomial m(x) is a degree-k polynomial over GF(q).

m=[mk1, , m1, m0]GF(q)k
m(x)=mk1xk1++m1x+m0GF(q)[x]

The codeword vector c is a member of GF(q)n. The corresponding codeword polynomial c(x) is a degree-n polynomial over GF(q).

c=[cn1, , c1, c0]GF(q)n
c(x)=cn1xn1++c1x+c0GF(q)[x]

The codeword vector is computed by matrix multiplication of the message vector with the generator matrix. The equivalent polynomial operation is multiplication of the message polynomial with the generator polynomial.

c=mG
c(x)=m(x)g(x)

Examples

Encode a single message using the RS(15,9) code.

In [1]: rs = galois.ReedSolomon(15, 9)

In [2]: GF = rs.field

In [3]: m = GF.Random(rs.k); m
Out[3]: GF([ 8,  9, 13,  5,  1,  5, 14,  5,  2], order=2^4)

In [4]: c = rs.encode(m); c
Out[4]: GF([ 8,  9, 13,  5,  1,  5, 14,  5,  2, 14,  7, 13, 15, 12, 14], order=2^4)

Compute the parity symbols only.

In [5]: p = rs.encode(m, output="parity"); p
Out[5]: GF([14,  7, 13, 15, 12, 14], order=2^4)

Encode a single message using the shortened RS(11,5) code.

In [6]: rs = galois.ReedSolomon(15, 9)

In [7]: GF = rs.field

In [8]: m = GF.Random(rs.k - 4); m
Out[8]: GF([12,  0,  7, 13,  3], order=2^4)

In [9]: c = rs.encode(m); c
Out[9]: GF([12,  0,  7, 13,  3,  7,  2, 11, 13, 14,  5], order=2^4)

Compute the parity symbols only.

In [10]: p = rs.encode(m, output="parity"); p
Out[10]: GF([ 7,  2, 11, 13, 14,  5], order=2^4)

Encode a matrix of three messages using the RS(15,9) code.

In [11]: rs = galois.ReedSolomon(15, 9)

In [12]: GF = rs.field

In [13]: m = GF.Random((3, rs.k)); m
Out[13]: 
GF([[ 8, 12, 11,  1, 10,  0,  2, 13, 10],
    [ 8,  5, 10, 10, 13,  8,  0,  9, 12],
    [11,  2,  3,  1,  7,  5, 14,  8,  2]], order=2^4)

In [14]: c = rs.encode(m); c
Out[14]: 
GF([[ 8, 12, 11,  1, 10,  0,  2, 13, 10,  0, 11,  6,  2, 11,  2],
    [ 8,  5, 10, 10, 13,  8,  0,  9, 12,  0, 12, 11,  5,  5,  6],
    [11,  2,  3,  1,  7,  5, 14,  8,  2,  9, 15,  7, 13,  8, 10]],
   order=2^4)

Compute the parity symbols only.

In [15]: p = rs.encode(m, output="parity"); p
Out[15]: 
GF([[ 0, 11,  6,  2, 11,  2],
    [ 0, 12, 11,  5,  5,  6],
    [ 9, 15,  7, 13,  8, 10]], order=2^4)

Encode a matrix of three messages using the shortened RS(11,5) code.

In [16]: rs = galois.ReedSolomon(15, 9)

In [17]: GF = rs.field

In [18]: m = GF.Random((3, rs.k - 4)); m
Out[18]: 
GF([[ 1,  6,  0,  2,  9],
    [ 0, 10,  9,  7, 10],
    [ 3,  4,  8, 13,  7]], order=2^4)

In [19]: c = rs.encode(m); c
Out[19]: 
GF([[ 1,  6,  0,  2,  9,  9,  9, 14, 14,  3,  4],
    [ 0, 10,  9,  7, 10, 13,  1, 10,  2,  8,  9],
    [ 3,  4,  8, 13,  7,  0,  5,  3,  0,  6,  5]], order=2^4)

Compute the parity symbols only.

In [20]: p = rs.encode(m, output="parity"); p
Out[20]: 
GF([[ 9,  9, 14, 14,  3,  4],
    [13,  1, 10,  2,  8,  9],
    [ 0,  5,  3,  0,  6,  5]], order=2^4)