galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the logarithm of the array \(x\) base \(\beta\).

Danger

If the Galois field is configured to use lookup tables, ufunc_mode == "jit-lookup", and this function is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than lookup tables).

Parameters:
base: ElementLike | ArrayLike | None = None

A primitive element(s) \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Returns:

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([169,  14, 176, 114, 198, 113,  12, 150,  44,  61], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([194, 209, 114, 231, 103,  13,  70,  52, 143, 170])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([    α^4 + α^3 + 2α^2 + 2α,  α^4 + α^3 + 2α^2 + α + 2,
           α^4 + 2α^2 + α + 1,         α^3 + α^2 + α + 1,
                        α + 2,       2α^4 + α^2 + 2α + 1,
                      α^3 + α, 2α^4 + 2α^3 + α^2 + α + 2,
     α^4 + α^3 + α^2 + 2α + 2,                  2α^2 + 2], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([144, 218, 181, 115,   5, 111,  47,  81,  65, 167])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([α^173, α^161, α^156,  α^12, α^239,  α^80, α^109,  α^75,  α^42,  α^36],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([173, 161, 156,  12, 239,  80, 109,  75,  42,  36])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([205, 167,  10,  38,  51,  92,  83, 177,  12, 114])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([205, 167,  10,  38,  51,  92,  83, 177,  12, 114])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([205, 167,  10,  38,  51,  92,  83, 177,  12, 114])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(11, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([ 74, 208, 160, 158, 122,  70, 214, 202, 104,  46,  80, 186, 150,
       134, 120, 204, 172, 236, 226, 108,  28, 218, 152, 148, 196,  98,
         4,   6,  76, 180, 126,  14,  96, 188, 174,  26,   8,  64,  60,
       106,  72,  92, 166, 184,  94,  24, 192,  84, 136, 170,  42, 210,
       232, 124, 224,  32,  18,  30, 142, 112,   2, 164, 102,  48,  58,
       114,  20, 116, 200, 168,  50, 206,  62, 190,  36, 156,  86, 162,
       178, 230, 182,  16, 234, 100,  68,  40,  54,  90,  78,  10, 144,
        34, 216, 130, 146, 212,  38, 240, 138,  12,  52, 140, 238, 222,
       128, 118, 228,  56,  82, 194])

In [29]: np.all(bases ** i == x)
Out[29]: True
In [30]: x = GF.Random(low=1); x
Out[30]: GF(α^4 + α^3 + 2α^2 + 1, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([ 25,  67,   5,  73,  87, 161, 105,  29, 215,   9,  63,  89, 103,
       163, 155, 203,  81,  83, 181,  79, 137, 211,  35, 171, 233, 177,
       227, 159, 199,  51, 193, 129,   3,  21,  13, 205,  91, 123,  17,
       147,  93, 139,  43, 157,  71,  31, 127, 169,  95, 149, 145, 241,
       219,  19,   7,   1, 235,  69, 133, 185,  53, 111,  41, 183,  85,
       117, 167,  49,  97, 217, 115, 135, 191, 195, 107, 141, 101, 179,
       119,  45, 225,  61, 151, 109, 229, 213, 221, 207, 131,  23,  65,
       175,  37,  57, 239, 173,  39, 189,  27, 197,  47, 201,  15,  75,
       125, 223, 113, 153, 237,  59])

In [33]: np.all(bases ** i == x)
Out[33]: True
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^33, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([ 33,  11,  55,  77, 231,  77, 187,  77, 187,  99, 209,  11, 165,
        99,  11,  55, 165, 187,  55, 143,  55, 143, 143, 187, 143,  11,
        77,  55,  11,  77, 187, 209,  33, 231, 143,  77,  33, 143, 187,
       165,  55,  77, 231,  33,  55,  99, 187, 165,  77, 187, 143, 231,
       231, 209,  77,  11, 165,  33,  11,  99,  99,  11, 209,  77, 209,
        77, 143,  55,  99, 209,  55,  33, 165, 209, 209,  99, 143,  33,
        99,  11,  55, 187, 209, 231,  99, 165,  11,  99, 231,  11, 231,
       231, 165, 143, 209, 209, 187, 143,  55, 231,  33,  33, 165,  99,
       165,  33,  33, 231, 187, 165])

In [37]: np.all(bases ** i == x)
Out[37]: True