-
galois.FieldArray.log(base: ElementLike | ArrayLike | None =
None
) int | ndarray Computes the discrete logarithm of the array \(x\) base \(\beta\).
- Parameters:¶
- base: ElementLike | ArrayLike | None =
None
¶ A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is
None
which usesprimitive_element
.Slower performance
If the
FieldArray
is configured to use lookup tables (ufunc_mode == "jit-lookup"
) and this method is invoked with a base different fromprimitive_element
, then explicit calculation will be used (which is slower than using lookup tables).
- base: ElementLike | ArrayLike | None =
- Returns:¶
An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.
Examples¶
Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.
In [1]: GF = galois.GF(3**5) In [2]: alpha = GF.primitive_element; alpha Out[2]: GF(3, order=3^5) In [3]: x = GF.Random(10, low=1); x Out[3]: GF([193, 31, 67, 90, 28, 238, 76, 37, 96, 241], order=3^5) In [4]: i = x.log(); i Out[4]: array([147, 214, 39, 48, 207, 186, 22, 227, 50, 238]) In [5]: np.array_equal(alpha ** i, x) Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly") In [7]: alpha = GF.primitive_element; alpha Out[7]: GF(α, order=3^5) In [8]: x = GF.Random(10, low=1); x Out[8]: GF([ 2α^3 + 2α + 1, α^2 + 2α + 1, 2α^4 + 2α^3 + α^2 + α + 1, α^3 + 2α^2 + 2α + 2, α^3 + α^2 + 2α + 1, 2α^4 + 2α^3 + α + 2, 2α + 1, 2α, 2α^4 + 2α^2 + α + 1, 2α^4 + α^3 + α^2 + 2], order=3^5) In [9]: i = x.log(); i Out[9]: array([170, 138, 163, 160, 30, 225, 126, 122, 156, 33]) In [10]: np.array_equal(alpha ** i, x) Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power") In [12]: alpha = GF.primitive_element; alpha Out[12]: GF(α, order=3^5) In [13]: x = GF.Random(10, low=1); x Out[13]: GF([α^156, α^18, α^12, α^150, α^82, α^142, α^212, α^199, α^195, α^13], order=3^5) In [14]: i = x.log(); i Out[14]: array([156, 18, 12, 150, 82, 142, 212, 199, 195, 13]) In [15]: np.array_equal(alpha ** i, x) Out[15]: True
With the default argument,
numpy.log()
andlog()
are equivalent.In [16]: np.array_equal(np.log(x), x.log()) Out[16]: True
Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.
In [17]: beta = GF.primitive_elements[-1]; beta Out[17]: GF(242, order=3^5) In [18]: i = x.log(beta); i Out[18]: array([ 10, 178, 38, 112, 58, 6, 26, 5, 73, 21]) In [19]: np.array_equal(beta ** i, x) Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5) In [21]: i = x.log(beta); i Out[21]: array([ 10, 178, 38, 112, 58, 6, 26, 5, 73, 21]) In [22]: np.array_equal(beta ** i, x) Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta Out[23]: GF(α^185, order=3^5) In [24]: i = x.log(beta); i Out[24]: array([ 10, 178, 38, 112, 58, 6, 26, 5, 73, 21]) In [25]: np.array_equal(beta ** i, x) Out[25]: True
Compute the logarithm of a single finite field element base all of the primitive elements of the field.
In [26]: x = GF.Random(low=1); x Out[26]: GF(153, order=3^5) In [27]: bases = GF.primitive_elements In [28]: i = x.log(bases); i Out[28]: array([224, 126, 190, 112, 160, 68, 118, 134, 184, 100, 216, 236, 42, 144, 82, 212, 174, 8, 102, 98, 124, 32, 120, 206, 142, 192, 156, 234, 60, 2, 74, 62, 114, 72, 10, 46, 70, 76, 162, 20, 146, 200, 182, 158, 36, 210, 228, 130, 222, 96, 186, 204, 94, 238, 24, 38, 218, 202, 214, 12, 78, 104, 106, 178, 84, 90, 54, 168, 56, 18, 14, 48, 240, 150, 194, 34, 208, 26, 166, 16, 80, 140, 172, 28, 232, 108, 170, 122, 138, 148, 50, 116, 196, 230, 128, 40, 30, 164, 58, 226, 92, 136, 86, 188, 152, 4, 180, 6, 52, 64]) In [29]: np.all(bases ** i == x) Out[29]: True
In [30]: x = GF.Random(low=1); x Out[30]: GF(α^2, order=3^5) In [31]: bases = GF.primitive_elements In [32]: i = x.log(bases); i Out[32]: array([ 2, 228, 194, 122, 36, 100, 202, 12, 114, 204, 218, 162, 76, 226, 206, 84, 142, 26, 150, 16, 40, 104, 148, 4, 38, 140, 144, 216, 74, 188, 180, 20, 68, 234, 214, 210, 46, 126, 224, 186, 172, 166, 168, 90, 238, 138, 136, 120, 56, 70, 60, 58, 124, 108, 78, 184, 164, 112, 30, 160, 72, 96, 42, 34, 152, 232, 236, 62, 182, 240, 106, 156, 54, 64, 86, 50, 192, 24, 116, 52, 18, 92, 196, 212, 28, 230, 8, 94, 146, 118, 102, 14, 32, 82, 174, 130, 158, 170, 128, 190, 178, 200, 98, 6, 10, 134, 222, 80, 48, 208]) In [33]: np.all(bases ** i == x) Out[33]: True
In [34]: x = GF.Random(low=1); x Out[34]: GF(α^136, order=3^5) In [35]: bases = GF.primitive_elements In [36]: i = x.log(bases); i Out[36]: array([136, 16, 124, 68, 28, 24, 184, 90, 8, 78, 62, 126, 86, 122, 214, 146, 218, 74, 36, 120, 58, 54, 142, 30, 164, 82, 112, 168, 192, 200, 140, 150, 26, 182, 32, 2, 224, 98, 228, 64, 80, 156, 50, 70, 212, 188, 52, 174, 178, 162, 208, 72, 204, 84, 222, 170, 20, 114, 104, 232, 56, 236, 194, 134, 172, 46, 76, 102, 34, 106, 190, 202, 42, 238, 40, 12, 230, 180, 144, 148, 14, 206, 18, 138, 210, 152, 60, 100, 6, 38, 160, 226, 240, 10, 216, 128, 96, 186, 234, 94, 4, 48, 130, 166, 196, 158, 92, 116, 118, 108]) In [37]: np.all(bases ** i == x) Out[37]: True