galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the logarithm of the array \(x\) base \(\beta\).

Danger

If the Galois field is configured to use lookup tables, ufunc_mode == "jit-lookup", and this function is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than lookup tables).

Parameters:
base: ElementLike | ArrayLike | None = None

A primitive element(s) \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Returns:

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([118, 236, 167, 206,  30, 212,  59, 212, 123,  36], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([ 83, 204,   9,  55,  47,  53,  77,  53, 217,  71])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([              α^4 + α^2 + 1,              2α^4 + α^2 + α,
          2α^4 + α^3 + α^2 + 2α,                α^3 + 2α + 2,
                        α^3 + 1,                2α^4 + α + 1,
    2α^4 + 2α^3 + 2α^2 + 2α + 1,               α^4 + α^3 + α,
                2α^4 + α^2 + 2α,              α^3 + 2α^2 + 2], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([148,  29, 201, 149, 207,  45, 238, 228,  78,  36])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([α^204,  α^32,  α^20, α^102,  α^79,  α^77, α^150,  α^16, α^125, α^172],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([204,  32,  20, 102,  79,  77, 150,  16, 125, 172])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([162, 182, 144, 202, 109, 143, 112, 212,  53, 222])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([162, 182, 144, 202, 109, 143, 112, 212,  53, 222])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([162, 182, 144, 202, 109, 143, 112, 212,  53, 222])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(224, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([155, 125,  31,  17,   7, 127, 167,  83, 123, 201, 197, 213, 203,
        91, 235,  97, 115,  79,   9, 151,  75, 195, 217, 189,  41,  81,
       149, 163, 169, 171,  35, 219,  67, 227, 129,  61, 177,  85,  57,
       137, 141,  39,  73, 199,  53,  47,  13, 225, 105, 101, 173, 139,
        51,  21, 237, 103,   5,  89, 147, 179, 135,  59, 109, 215,  43,
       193,  19, 207,  69,  87, 229, 111,  71, 241, 131,   3, 239,  45,
       157,  37, 185, 233,  65,  95, 113, 159,  15,  25, 183, 191, 161,
       117, 181,  63, 175, 153, 145, 107, 119, 205,   1, 133,  93, 223,
        49, 221,  23,  29, 211,  27])

In [29]: np.all(bases ** i == x)
Out[29]: True
In [30]: x = GF.Random(low=1); x
Out[30]: GF(2α^3 + α^2 + 2α, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([ 18, 116,  52, 130,  82, 174, 124, 108,  58, 142,  26,   6, 200,
        98, 160,  30,  68, 234, 140, 144, 118, 210, 122,  36, 100,  50,
        86,   8, 182, 240, 168, 180, 128, 170, 232, 196, 172, 166,  80,
       222,  96,  42,  60,  84, 206,  32,  14, 112,  20, 146,  56,  38,
       148,   4, 218, 204,  24,  40,  28, 230, 164, 138, 136,  64, 158,
       152, 188,  74, 186, 224, 228, 194,   2,  92,  48, 208,  34, 216,
        76, 226, 162, 102,  70, 214,  10, 134,  72, 120, 104,  94, 192,
       126,  46,  12, 114, 202, 212,  78, 184,  16, 150, 106, 156,  54,
        90, 238,  62, 236, 190, 178])

In [33]: np.all(bases ** i == x)
Out[33]: True
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^90, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([ 90,  96,  18, 166, 168, 144, 136,  56,  48, 226, 130,  30,  32,
         6,  74, 150,  98, 202, 216, 236, 106,  82, 126, 180,  16,   8,
       188,  40, 184, 232, 114, 174, 156, 124, 192,  12, 134, 104, 158,
       142, 238, 210,  58, 178,  62, 160,  70,  76, 100,   4,  38, 190,
        14,  20, 122,  52, 120, 200, 140, 182,  94, 206, 196,  78,  64,
        34, 214, 128, 204, 152, 172,   2,  10, 218, 240,  72, 170, 112,
       138, 162,  84,  26, 108, 102,  50, 186, 118, 116,  36, 228, 234,
       146, 230,  60,  86,  42,  92, 148, 194,  80,  24,  46,  54,  28,
       208, 222,  68, 212, 224, 164])

In [37]: np.all(bases ** i == x)
Out[37]: True