galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the logarithm of the array \(x\) base \(\beta\).

Danger

If the Galois field is configured to use lookup tables, ufunc_mode == "jit-lookup", and this function is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than lookup tables).

Parameters:
base: ElementLike | ArrayLike | None = None

A primitive element(s) \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Returns:

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([127,  58, 140, 208,  48, 214, 191, 115, 162, 118], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([ 25,  28, 212,  98, 139, 153, 220, 104, 125,  83])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([                α^4 + 2α^3,          α^4 + 2α^3 + 2α^2,
                         α + 1,  2α^4 + α^3 + 2α^2 + α + 2,
     α^4 + 2α^3 + 2α^2 + α + 2,              α^4 + α^2 + 2,
       α^4 + α^3 + α^2 + α + 1, 2α^4 + 2α^3 + 2α^2 + α + 2,
          α^4 + 2α^3 + α^2 + 1,           2α^4 + 2α^2 + 2α], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([  8, 224,  69,  53, 145,  14,  64, 162, 179,  94])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([α^151, α^233, α^195, α^170, α^197, α^138, α^124, α^175, α^128, α^133],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([151, 233, 195, 170, 197, 138, 124, 175, 128, 133])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([ 95, 153,  73,  14,  39,  74,  70, 171,   2, 159])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([ 95, 153,  73,  14,  39,  74,  70, 171,   2, 159])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([ 95, 153,  73,  14,  39,  74,  70, 171,   2, 159])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(116, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([ 84, 138, 162,  42,  60,  86,  14,  20, 190,  98, 202,  28,  46,
        54, 182, 140, 156, 124,   8, 188, 228,  12, 166, 168, 144,  72,
       240, 118, 204, 152,  58, 114, 194, 148,  34, 108, 238, 210, 212,
        68, 206, 196,  38, 150,  74, 230, 146, 200, 174,  36, 100,  16,
       126, 180, 130, 226, 112, 106,  50, 186, 120, 160,  70, 218,  92,
        64, 232, 184, 142, 158,  96,  18,  90,  26, 224, 164,  78,  40,
        32,   6,  30, 234,   4, 192, 208, 222,  94,  76,  82, 116, 170,
       104, 134,  56,  48, 136, 102, 122,  52, 236, 216, 172,   2,  10,
       178,  62, 128, 214,  80,  24])

In [29]: np.all(bases ** i == x)
Out[29]: True
In [30]: x = GF.Random(low=1); x
Out[30]: GF(2α^4 + α + 2, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([  9, 179, 147,  65,  41,  87, 183, 175,  29,  71,  13,   3, 221,
        49, 201,  15, 155, 117, 191, 193,  59, 105,  61, 139, 171,  25,
        43, 125,  91, 241, 205, 211, 185,  85, 237, 219, 207,  83, 161,
       111, 169,  21, 151, 163, 103, 137,   7, 177, 131,  73, 149,  19,
       195, 123, 109, 223, 133, 141, 135, 115, 203,  69, 189, 153,  79,
       197, 215,  37,  93, 233, 235,  97,   1, 167, 145, 225,  17, 229,
       159, 113,  81,  51,  35, 107,   5,  67, 157, 181, 173,  47, 217,
        63,  23, 127,  57, 101, 227,  39, 213, 129,  75,  53, 199,  27,
        45, 119,  31, 239,  95,  89])

In [33]: np.all(bases ** i == x)
Out[33]: True
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^84, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([ 84, 138, 162,  42,  60,  86,  14,  20, 190,  98, 202,  28,  46,
        54, 182, 140, 156, 124,   8, 188, 228,  12, 166, 168, 144,  72,
       240, 118, 204, 152,  58, 114, 194, 148,  34, 108, 238, 210, 212,
        68, 206, 196,  38, 150,  74, 230, 146, 200, 174,  36, 100,  16,
       126, 180, 130, 226, 112, 106,  50, 186, 120, 160,  70, 218,  92,
        64, 232, 184, 142, 158,  96,  18,  90,  26, 224, 164,  78,  40,
        32,   6,  30, 234,   4, 192, 208, 222,  94,  76,  82, 116, 170,
       104, 134,  56,  48, 136, 102, 122,  52, 236, 216, 172,   2,  10,
       178,  62, 128, 214,  80,  24])

In [37]: np.all(bases ** i == x)
Out[37]: True