galois.FieldArray.log(base: ElementLike | ArrayLike | None = None) int | ndarray

Computes the logarithm of the array \(x\) base \(\beta\).

Danger

If the Galois field is configured to use lookup tables, ufunc_mode == "jit-lookup", and this function is invoked with a base different from primitive_element, then explicit calculation will be used (which is slower than lookup tables).

Parameters:
base: ElementLike | ArrayLike | None = None

A primitive element(s) \(\beta\) of the finite field that is the base of the logarithm. The default is None which uses primitive_element.

Returns:

An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.

Examples

Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.

In [1]: GF = galois.GF(3**5)

In [2]: alpha = GF.primitive_element; alpha
Out[2]: GF(3, order=3^5)

In [3]: x = GF.Random(10, low=1); x
Out[3]: GF([201, 224,  20,  61,  25,  74, 232,  45, 100, 128], order=3^5)

In [4]: i = x.log(); i
Out[4]: array([ 40, 155, 167, 170,  88, 106,  97,   7,  92,  66])

In [5]: np.array_equal(alpha ** i, x)
Out[5]: True
In [6]: GF = galois.GF(3**5, repr="poly")

In [7]: alpha = GF.primitive_element; alpha
Out[7]: GF(α, order=3^5)

In [8]: x = GF.Random(10, low=1); x
Out[8]: 
GF([                   α^2 + 1,        α^4 + 2α^3 + 2α + 2,
                2α^3 + α^2 + 2,                   α^4 + 2α,
             α^4 + α^2 + α + 1, 2α^4 + 2α^3 + 2α^2 + α + 1,
                       α^3 + α,   α^4 + 2α^3 + α^2 + α + 1,
           2α^3 + 2α^2 + α + 1,                       2α^2], order=3^5)

In [9]: i = x.log(); i
Out[9]: array([ 46,  26, 233,  16, 142, 186,  47,  54,  22, 123])

In [10]: np.array_equal(alpha ** i, x)
Out[10]: True
In [11]: GF = galois.GF(3**5, repr="power")

In [12]: alpha = GF.primitive_element; alpha
Out[12]: GF(α, order=3^5)

In [13]: x = GF.Random(10, low=1); x
Out[13]: 
GF([α^109, α^167, α^224,  α^66,  α^91, α^147, α^223,  α^73,  α^17, α^139],
   order=3^5)

In [14]: i = x.log(); i
Out[14]: array([109, 167, 224,  66,  91, 147, 223,  73,  17, 139])

In [15]: np.array_equal(alpha ** i, x)
Out[15]: True

With the default argument, numpy.log() and log() are equivalent.

In [16]: np.array_equal(np.log(x), x.log())
Out[16]: True

Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.

In [17]: beta = GF.primitive_elements[-1]; beta
Out[17]: GF(242, order=3^5)

In [18]: i = x.log(beta); i
Out[18]: array([ 83,  65,  64,  88, 147, 163,  81, 211, 195,  57])

In [19]: np.array_equal(beta ** i, x)
Out[19]: True
In [20]: beta = GF.primitive_elements[-1]; beta
Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5)

In [21]: i = x.log(beta); i
Out[21]: array([ 83,  65,  64,  88, 147, 163,  81, 211, 195,  57])

In [22]: np.array_equal(beta ** i, x)
Out[22]: True
In [23]: beta = GF.primitive_elements[-1]; beta
Out[23]: GF(α^185, order=3^5)

In [24]: i = x.log(beta); i
Out[24]: array([ 83,  65,  64,  88, 147, 163,  81, 211, 195,  57])

In [25]: np.array_equal(beta ** i, x)
Out[25]: True

Compute the logarithm of a single finite field element base all of the primitive elements of the field.

In [26]: x = GF.Random(low=1); x
Out[26]: GF(127, order=3^5)

In [27]: bases = GF.primitive_elements

In [28]: i = x.log(bases); i
Out[28]: 
array([ 25,  67,   5,  73,  87, 161, 105,  29, 215,   9,  63,  89, 103,
       163, 155, 203,  81,  83, 181,  79, 137, 211,  35, 171, 233, 177,
       227, 159, 199,  51, 193, 129,   3,  21,  13, 205,  91, 123,  17,
       147,  93, 139,  43, 157,  71,  31, 127, 169,  95, 149, 145, 241,
       219,  19,   7,   1, 235,  69, 133, 185,  53, 111,  41, 183,  85,
       117, 167,  49,  97, 217, 115, 135, 191, 195, 107, 141, 101, 179,
       119,  45, 225,  61, 151, 109, 229, 213, 221, 207, 131,  23,  65,
       175,  37,  57, 239, 173,  39, 189,  27, 197,  47, 201,  15,  75,
       125, 223, 113, 153, 237,  59])

In [29]: np.all(bases ** i == x)
Out[29]: True
In [30]: x = GF.Random(low=1); x
Out[30]: GF(α^4 + 2α, order=3^5)

In [31]: bases = GF.primitive_elements

In [32]: i = x.log(bases); i
Out[32]: 
array([ 16, 130, 100,   8,  46,  74, 164,  96, 186, 180,  50,  86, 124,
       114, 196, 188, 168, 208, 232, 128,  78, 106, 216,  32,  62, 152,
       184,  34, 108,  52, 230, 160,  60, 178,  18, 228, 126,  40,  98,
        36, 166, 118, 134, 236, 210, 136, 120, 234, 206,  76, 238, 222,
        24, 138, 140,  20, 102, 170, 240,  70,  92,  42,  94,  30,   6,
       162, 194,  12,   4, 226, 122,  38, 190,  28, 204, 158,  84, 192,
       202, 174, 144,  10, 116,   2, 224, 146,  64,  26, 200, 218,  90,
       112,  14, 172, 182,  72,  54, 150,  56,  68, 214, 148,  58,  48,
        80, 104,  82, 156, 142, 212])

In [33]: np.all(bases ** i == x)
Out[33]: True
In [34]: x = GF.Random(low=1); x
Out[34]: GF(α^193, order=3^5)

In [35]: bases = GF.primitive_elements

In [36]: i = x.log(bases); i
Out[36]: 
array([193, 101,  87, 157, 207,  91, 133,  69, 111, 205, 225, 145, 195,
        29,  35, 241, 151,  89, 197, 213, 109, 235, 125,  23,  37,  79,
       223, 153, 123, 113,  67, 115, 149,  75,  81, 179,  83,  59, 199,
        41,  21,  47, 119, 215, 219,   7, 177,  85, 201, 221, 103,  31,
       229, 137,  25, 211, 217,  39, 233,  73,  51, 189, 181, 135,  27,
         3, 147, 175, 139,  49,  65, 171, 129,   5,  71, 227,  15,  17,
       183,  57,  43,  45, 159,   9, 161, 173, 167, 117,  53,  13, 163,
       141,  63, 169,  93, 203,   1, 191, 131, 185, 237,  61,  19,  95,
       239, 105, 127,  97, 155, 107])

In [37]: np.all(bases ** i == x)
Out[37]: True