-
galois.random_prime(bits: int, seed: int | None =
None
) int Returns a random prime \(p\) with \(b\) bits, such that \(2^b \le p < 2^{b+1}\).
This function randomly generates integers with \(b\) bits and uses the primality tests in
is_prime()
to determine if \(p\) is prime.See also
References¶
Examples¶
Generate a random 1024-bit prime.
In [1]: p = galois.random_prime(1024, seed=1); p Out[1]: 327845897586213436751081882871255331286648902836386839087617368608439574698192016043769533823474001379935585889197488144338014865193967937011638431094821943416361149113909692569658970713864593781874423564706915495970135894084612689487074397782022398597547611189482697523681694691585678818112329605903872356773 In [2]: galois.is_prime(p) Out[2]: True
Verify that \(p\) is prime using the OpenSSL library.
$ openssl prime 327845897586213436751081882871255331286648902836386839087617368608439574698192016043769533823474001379935585889197488144338014865193967937011638431094821943416361149113909692569658970713864593781874423564706915495970135894084612689487074397782022398597547611189482697523681694691585678818112329605903872356773 1D2DE38DE88C67E1EAFDEEAE77C40B8709ED9C275522C6D5578976B1ABCBE7E0F8C6DE1271EEC6EB3827649164189788F9F3A622AEA5F4039761EC708B5841DE88566D9B5BAF49BA92DCE5A300297A9E0E890E4103ED2AD4B5E0553CE56E8C34758CD45900125DBA1553AE73AA0CBD6018A2A8713D46E475BF058D1AAA52EF1A5 (327845897586213436751081882871255331286648902836386839087617368608439574698192016043769533823474001379935585889197488144338014865193967937011638431094821943416361149113909692569658970713864593781874423564706915495970135894084612689487074397782022398597547611189482697523681694691585678818112329605903872356773) is prime