-
galois.mersenne_exponents(n: int | None =
None
) list[int] Returns all known Mersenne exponents \(e\) for \(e \le n\).
A Mersenne exponent \(e\) is an exponent of 2 such that \(2^e - 1\) is prime.
See also
References¶
Examples¶
# List all Mersenne exponents for Mersenne primes up to 2000 bits In [1]: e = galois.mersenne_exponents(2000); e Out[1]: [2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279] # Select one Merseene exponent and compute its Mersenne prime In [2]: p = 2**e[-1] - 1; p Out[2]: 10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087 In [3]: galois.is_prime(p) Out[3]: True