-
galois.irreducible_polys(order: int, degree: int, reverse: bool =
False
) Iterator[Poly] Iterates through all monic irreducible polynomials \(f(x)\) over \(\mathrm{GF}(q)\) with degree \(m\).
- Parameters¶
- order: int¶
The prime power order \(q\) of the field \(\mathrm{GF}(q)\) that the polynomial is over.
- degree: int¶
The degree \(m\) of the desired irreducible polynomial.
- reverse: bool =
False
¶ Indicates to return the irreducible polynomials from lexicographically maximal to minimal. The default is
False
.
- Returns¶
An iterator over all degree-\(m\) monic irreducible polynomials over \(\mathrm{GF}(q)\).
See also
Notes¶
If \(f(x)\) is an irreducible polynomial over \(\mathrm{GF}(q)\) and \(a \in \mathrm{GF}(q) \backslash \{0\}\), then \(a \cdot f(x)\) is also irreducible.
In addition to other applications, \(f(x)\) produces the field extension \(\mathrm{GF}(q^m)\) of \(\mathrm{GF}(q)\).
Examples¶
Find all monic irreducible polynomials over \(\mathrm{GF}(3)\) with degree 4. You may also use
tuple()
on the returned generator.In [1]: list(galois.irreducible_polys(3, 4)) Out[1]: [Poly(x^4 + x + 2, GF(3)), Poly(x^4 + 2x + 2, GF(3)), Poly(x^4 + x^2 + 2, GF(3)), Poly(x^4 + x^2 + x + 1, GF(3)), Poly(x^4 + x^2 + 2x + 1, GF(3)), Poly(x^4 + 2x^2 + 2, GF(3)), Poly(x^4 + x^3 + 2, GF(3)), Poly(x^4 + x^3 + 2x + 1, GF(3)), Poly(x^4 + x^3 + x^2 + 1, GF(3)), Poly(x^4 + x^3 + x^2 + x + 1, GF(3)), Poly(x^4 + x^3 + x^2 + 2x + 2, GF(3)), Poly(x^4 + x^3 + 2x^2 + 2x + 2, GF(3)), Poly(x^4 + 2x^3 + 2, GF(3)), Poly(x^4 + 2x^3 + x + 1, GF(3)), Poly(x^4 + 2x^3 + x^2 + 1, GF(3)), Poly(x^4 + 2x^3 + x^2 + x + 2, GF(3)), Poly(x^4 + 2x^3 + x^2 + 2x + 1, GF(3)), Poly(x^4 + 2x^3 + 2x^2 + x + 2, GF(3))]
Loop over all the polynomials in reversed order, only finding them as needed. The search cost for the polynomials that would have been found after the
break
condition is never incurred.In [2]: for poly in galois.irreducible_polys(3, 4, reverse=True): ...: if poly.coeffs[1] < 2: # Early exit condition ...: break ...: print(poly) ...: x^4 + 2x^3 + 2x^2 + x + 2 x^4 + 2x^3 + x^2 + 2x + 1 x^4 + 2x^3 + x^2 + x + 2 x^4 + 2x^3 + x^2 + 1 x^4 + 2x^3 + x + 1 x^4 + 2x^3 + 2
Or, manually iterate over the generator.
In [3]: generator = galois.irreducible_polys(3, 4, reverse=True); generator Out[3]: <generator object irreducible_polys at 0x7f926b7b4350> In [4]: next(generator) Out[4]: Poly(x^4 + 2x^3 + 2x^2 + x + 2, GF(3)) In [5]: next(generator) Out[5]: Poly(x^4 + 2x^3 + x^2 + 2x + 1, GF(3)) In [6]: next(generator) Out[6]: Poly(x^4 + 2x^3 + x^2 + x + 2, GF(3))