- galois.FieldArray.plu_decompose() tuple[Self, Self, Self]
Decomposes the input array into the product of lower and upper triangular matrices using partial pivoting.
- Returns¶
P – The column permutation matrix.
L – The lower triangular matrix.
U – The upper triangular matrix.
Notes¶
The PLU decomposition of \(\mathbf{A}\) is defined as \(\mathbf{A} = \mathbf{P} \mathbf{L} \mathbf{U}\). This is equivalent to \(\mathbf{P}^T \mathbf{A} = \mathbf{L} \mathbf{U}\).
Examples¶
In [1]: GF = galois.GF(31) In [2]: A = GF([[0, 29, 2, 9], [20, 24, 5, 1], [2, 24, 1, 7]]); A Out[2]: GF([[ 0, 29, 2, 9], [20, 24, 5, 1], [ 2, 24, 1, 7]], order=31) In [3]: P, L, U = A.plu_decompose() In [4]: P Out[4]: GF([[0, 1, 0], [1, 0, 0], [0, 0, 1]], order=31) In [5]: L Out[5]: GF([[ 1, 0, 0], [ 0, 1, 0], [28, 14, 1]], order=31) In [6]: U Out[6]: GF([[20, 24, 5, 1], [ 0, 29, 2, 9], [ 0, 0, 19, 8]], order=31) In [7]: np.array_equal(A, P @ L @ U) Out[7]: True In [8]: np.array_equal(P.T @ A, L @ U) Out[8]: True