-
galois.FieldArray(x: ElementLike | ArrayLike, dtype: DTypeLike | None =
None
, copy: bool =True
, order: 'K' | 'A' | 'C' | 'F' ='K'
, ndmin: int =0
) Creates an array over \(\mathrm{GF}(p^m)\).
- Parameters¶
- x: ElementLike | ArrayLike¶
A finite field scalar or array.
- dtype: DTypeLike | None =
None
¶ The
numpy.dtype
of the array elements. The default isNone
which represents the smallest unsigned data type for thisFieldArray
subclass (the first element indtypes
).- copy: bool =
True
¶ The
copy
keyword argument fromnumpy.array()
. The default isTrue
.- order: 'K' | 'A' | 'C' | 'F' =
'K'
¶ The
order
keyword argument fromnumpy.array()
. The default is"K"
.- ndmin: int =
0
¶ The
ndmin
keyword argument fromnumpy.array()
. The default is 0.
Examples¶
Create a
FieldArray
subclass for \(\mathrm{GF}(3^5)\).In [1]: GF = galois.GF(3**5) In [2]: print(GF.properties) Galois Field: name: GF(3^5) characteristic: 3 degree: 5 order: 243 irreducible_poly: x^5 + 2x + 1 is_primitive_poly: True primitive_element: x In [3]: alpha = GF.primitive_element; alpha Out[3]: GF(3, order=3^5)
In [4]: GF = galois.GF(3**5, display="poly") In [5]: print(GF.properties) Galois Field: name: GF(3^5) characteristic: 3 degree: 5 order: 243 irreducible_poly: x^5 + 2x + 1 is_primitive_poly: True primitive_element: x In [6]: alpha = GF.primitive_element; alpha Out[6]: GF(α, order=3^5)
In [7]: GF = galois.GF(3**5, display="power") In [8]: print(GF.properties) Galois Field: name: GF(3^5) characteristic: 3 degree: 5 order: 243 irreducible_poly: x^5 + 2x + 1 is_primitive_poly: True primitive_element: x In [9]: alpha = GF.primitive_element; alpha Out[9]: GF(α, order=3^5)
Create a finite field scalar from its integer representation, polynomial representation, or a power of the primitive element.
In [10]: GF(17) Out[10]: GF(17, order=3^5) In [11]: GF("x^2 + 2x + 2") Out[11]: GF(17, order=3^5) In [12]: alpha ** 222 Out[12]: GF(17, order=3^5)
In [13]: GF(17) Out[13]: GF(α^2 + 2α + 2, order=3^5) In [14]: GF("x^2 + 2x + 2") Out[14]: GF(α^2 + 2α + 2, order=3^5) In [15]: alpha ** 222 Out[15]: GF(α^2 + 2α + 2, order=3^5)
In [16]: GF(17) Out[16]: GF(α^222, order=3^5) In [17]: GF("x^2 + 2x + 2") Out[17]: GF(α^222, order=3^5) In [18]: alpha ** 222 Out[18]: GF(α^222, order=3^5)
Create a finite field array from its integer representation, polynomial representation, or powers of the primitive element.
In [19]: GF([17, 4, 148, 205]) Out[19]: GF([ 17, 4, 148, 205], order=3^5) In [20]: GF([["x^2 + 2x + 2", 4], ["x^4 + 2x^3 + x^2 + x + 1", 205]]) Out[20]: GF([[ 17, 4], [148, 205]], order=3^5) In [21]: alpha ** np.array([[222, 69], [54, 24]]) Out[21]: GF([[ 17, 4], [148, 205]], order=3^5)
In [22]: GF([17, 4, 148, 205]) Out[22]: GF([ α^2 + 2α + 2, α + 1, α^4 + 2α^3 + α^2 + α + 1, 2α^4 + α^3 + α^2 + 2α + 1], order=3^5) In [23]: GF([["x^2 + 2x + 2", 4], ["x^4 + 2x^3 + x^2 + x + 1", 205]]) Out[23]: GF([[ α^2 + 2α + 2, α + 1], [ α^4 + 2α^3 + α^2 + α + 1, 2α^4 + α^3 + α^2 + 2α + 1]], order=3^5) In [24]: alpha ** np.array([[222, 69], [54, 24]]) Out[24]: GF([[ α^2 + 2α + 2, α + 1], [ α^4 + 2α^3 + α^2 + α + 1, 2α^4 + α^3 + α^2 + 2α + 1]], order=3^5)
In [25]: GF([17, 4, 148, 205]) Out[25]: GF([α^222, α^69, α^54, α^24], order=3^5) In [26]: GF([["x^2 + 2x + 2", 4], ["x^4 + 2x^3 + x^2 + x + 1", 205]]) Out[26]: GF([[α^222, α^69], [ α^54, α^24]], order=3^5) In [27]: alpha ** np.array([[222, 69], [54, 24]]) Out[27]: GF([[α^222, α^69], [ α^54, α^24]], order=3^5)