galois
galois.Array.elements
Initializing search
mhostetter/galois
Getting Started
Basic Usage
Tutorials
Performance
Development
API Reference
Release Notes
Index
galois
mhostetter/galois
Getting Started
Getting Started
Getting Started
Basic Usage
Basic Usage
Array Classes
Compilation Modes
Element Representation
Array Creation
Array Arithmetic
Polynomials
Polynomial Arithmetic
Tutorials
Tutorials
Intro to Prime Fields
Intro to Extension Fields
Performance
Performance
Prime Fields
Binary Extension Fields
Benchmarks
Development
Development
Installation
Linter
Unit Tests
Documentation
API Reference
API Reference
galois
galois
Arrays
Arrays
C
Array
C
Array
Constructors
Constructors
M
Identity
M
Ones
M
Random
M
Range
M
Zeros
Methods
Methods
M
compile
M
display
Properties
Properties
P
characteristic
P
default_
ufunc_
mode
P
degree
P
display_
mode
P
dtypes
P
elements
P
irreducible_
poly
P
name
P
order
P
primitive_
element
P
ufunc_
mode
P
ufunc_
modes
P
units
V
Array
Like
V
DType
Like
V
Element
Like
V
Iterable
Like
V
Shape
Like
Galois fields
Galois fields
C
Field
Array
C
Field
Array
Constructors
Constructors
M
__
init__
M
Identity
M
Ones
M
Random
M
Range
M
Vandermonde
M
Vector
M
Zeros
String representation
String representation
M
__
repr__
M
__
str__
P
properties
Methods
Methods
M
additive_
order
M
arithmetic_
table
M
characteristic_
poly
M
column_
space
M
field_
norm
M
field_
trace
M
is_
square
M
left_
null_
space
M
log
M
lu_
decompose
M
minimal_
poly
M
multiplicative_
order
M
null_
space
M
plu_
decompose
M
primitive_
root_
of_
unity
M
primitive_
roots_
of_
unity
M
repr_
table
M
row_
reduce
M
row_
space
M
vector
Properties
Properties
P
characteristic
P
default_
ufunc_
mode
P
degree
P
display_
mode
P
dtypes
P
elements
P
irreducible_
poly
P
is_
extension_
field
P
is_
prime_
field
P
is_
primitive_
poly
P
name
P
non_
squares
P
order
P
prime_
subfield
P
primitive_
element
P
primitive_
elements
P
squares
P
ufunc_
mode
P
ufunc_
modes
P
units
C
GF2
F
Field
F
GF
Primitive elements
Primitive elements
F
is_
primitive_
element
F
primitive_
element
F
primitive_
elements
Polynomials
Polynomials
C
Poly
C
Poly
Constructors
Constructors
M
__
init__
M
Degrees
M
Identity
M
Int
M
One
M
Random
M
Roots
M
Str
M
Zero
String representation
String representation
M
__
repr__
M
__
str__
Special methods
Special methods
M
__
call__
M
__
eq__
M
__
int__
M
__
len__
Methods
Methods
M
coefficients
M
derivative
M
distinct_
degree_
factors
M
equal_
degree_
factors
M
factors
M
is_
irreducible
M
is_
primitive
M
is_
square_
free
M
reverse
M
roots
M
square_
free_
factors
Properties
Properties
P
coeffs
P
degree
P
degrees
P
field
P
is_
monic
P
nonzero_
coeffs
P
nonzero_
degrees
V
Poly
Like
Irreducible polynomials
Irreducible polynomials
F
irreducible_
poly
F
irreducible_
polys
Primitive polynomials
Primitive polynomials
F
conway_
poly
F
matlab_
primitive_
poly
F
primitive_
poly
F
primitive_
polys
Interpolating polynomials
Interpolating polynomials
F
lagrange_
poly
Forward error correction
Forward error correction
C
BCH
C
BCH
Constructors
Constructors
M
__
init__
String representation
String representation
M
__
repr__
M
__
str__
Methods
Methods
M
decode
M
detect
M
encode
Properties
Properties
P
d
P
field
P
G
P
generator_
poly
P
H
P
is_
narrow_
sense
P
is_
primitive
P
is_
systematic
P
k
P
n
P
roots
P
t
C
Reed
Solomon
C
Reed
Solomon
Constructors
Constructors
M
__
init__
String representation
String representation
M
__
repr__
M
__
str__
Methods
Methods
M
decode
M
detect
M
encode
Properties
Properties
P
c
P
d
P
field
P
G
P
generator_
poly
P
H
P
is_
narrow_
sense
P
is_
systematic
P
k
P
n
P
roots
P
t
F
bch_
valid_
codes
F
generator_
to_
parity_
check_
matrix
F
parity_
check_
to_
generator_
matrix
F
poly_
to_
generator_
matrix
F
roots_
to_
parity_
check_
matrix
Linear sequences
Linear sequences
C
FLFSR
C
FLFSR
Constructors
Constructors
M
__
init__
M
Taps
String representation
String representation
M
__
repr__
M
__
str__
Methods
Methods
M
reset
M
step
M
to_
galois_
lfsr
Properties
Properties
P
characteristic_
poly
P
feedback_
poly
P
field
P
initial_
state
P
order
P
state
P
taps
C
GLFSR
C
GLFSR
Constructors
Constructors
M
__
init__
M
Taps
String representation
String representation
M
__
repr__
M
__
str__
Methods
Methods
M
reset
M
step
M
to_
fibonacci_
lfsr
Properties
Properties
P
characteristic_
poly
P
feedback_
poly
P
field
P
initial_
state
P
order
P
state
P
taps
F
berlekamp_
massey
Transforms
Transforms
F
intt
F
ntt
Number theory
Number theory
Divisibility
Divisibility
F
are_
coprime
F
egcd
F
euler_
phi
F
gcd
F
lcm
F
prod
F
totatives
Congruences
Congruences
F
carmichael_
lambda
F
crt
F
is_
cyclic
F
jacobi_
symbol
F
kronecker_
symbol
F
legendre_
symbol
Primitive roots
Primitive roots
F
is_
primitive_
root
F
primitive_
root
F
primitive_
roots
Integer arithmetic
Integer arithmetic
F
ilog
F
iroot
F
isqrt
Factorization
Factorization
Prime factorization
Prime factorization
F
factors
Composite factorization
Composite factorization
F
divisor_
sigma
F
divisors
Specific factorization algorithms
Specific factorization algorithms
F
perfect_
power
F
pollard_
p1
F
pollard_
rho
F
trial_
division
Primes
Primes
Prime number generation
Prime number generation
F
kth_
prime
F
mersenne_
exponents
F
mersenne_
primes
F
next_
prime
F
prev_
prime
F
primes
F
random_
prime
Primality tests
Primality tests
F
is_
composite
F
is_
perfect_
power
F
is_
powersmooth
F
is_
prime
F
is_
prime_
power
F
is_
smooth
F
is_
square_
free
Specific primality tests
Specific primality tests
F
fermat_
primality_
test
F
miller_
rabin_
primality_
test
Configuration
Configuration
F
get_
printoptions
F
printoptions
F
set_
printoptions
Release Notes
Release Notes
Versioning
v0.
1.
2
v0.
1.
1
v0.
1.
0
v0.
0.
33
v0.
0.
32
v0.
0.
31
v0.
0.
30
v0.
0.
29
v0.
0.
28
v0.
0.
27
v0.
0.
26
v0.
0.
25
v0.
0.
24
v0.
0.
23
v0.
0.
22
v0.
0.
21
v0.
0.
20
v0.
0.
19
v0.
0.
18
v0.
0.
17
v0.
0.
16
v0.
0.
15
v0.
0.
14
Index
Index
Index
class
property
galois.
Array.
elements
:
Array
All elements of the Galois field or Galois ring.
Back to top