- galois.ReedSolomon.detect(codeword: ArrayLike) bool_ | ndarray
Detects if errors are present in the Reed-Solomon codeword \(\mathbf{c}\).
The \([n, k, d]_q\) Reed-Solomon code has \(d_{min} = d\) minimum distance. It can detect up to \(d_{min}-1\) errors.
- Parameters¶
- Returns¶
A boolean scalar or array indicating if errors were detected in the corresponding codeword
True
or notFalse
.
Examples¶
Encode a single message using the \(\textrm{RS}(15, 9)\) code.
In [1]: rs = galois.ReedSolomon(15, 9) In [2]: GF = rs.field In [3]: m = GF.Random(rs.k); m Out[3]: GF([14, 12, 8, 8, 7, 10, 6, 12, 10], order=2^4) In [4]: c = rs.encode(m); c Out[4]: GF([14, 12, 8, 8, 7, 10, 6, 12, 10, 8, 4, 13, 0, 11, 13], order=2^4)
Detect no errors in the valid codeword.
In [5]: rs.detect(c) Out[5]: False
Detect \(d_{min}-1\) errors in the codeword.
In [6]: rs.d Out[6]: 7 In [7]: e = GF.Random(rs.d - 1, low=1); e Out[7]: GF([15, 14, 8, 2, 9, 4], order=2^4) In [8]: c[0:rs.d - 1] += e; c Out[8]: GF([ 1, 2, 0, 10, 14, 14, 6, 12, 10, 8, 4, 13, 0, 11, 13], order=2^4) In [9]: rs.detect(c) Out[9]: True
Encode a single message using the shortened \(\textrm{RS}(11, 5)\) code.
In [10]: rs = galois.ReedSolomon(15, 9) In [11]: GF = rs.field In [12]: m = GF.Random(rs.k - 4); m Out[12]: GF([3, 1, 6, 4, 5], order=2^4) In [13]: c = rs.encode(m); c Out[13]: GF([ 3, 1, 6, 4, 5, 13, 0, 13, 1, 2, 7], order=2^4)
Detect no errors in the valid codeword.
In [14]: rs.detect(c) Out[14]: False
Detect \(d_{min}-1\) errors in the codeword.
In [15]: rs.d Out[15]: 7 In [16]: e = GF.Random(rs.d - 1, low=1); e Out[16]: GF([11, 7, 5, 4, 1, 8], order=2^4) In [17]: c[0:rs.d - 1] += e; c Out[17]: GF([ 8, 6, 3, 0, 4, 5, 0, 13, 1, 2, 7], order=2^4) In [18]: rs.detect(c) Out[18]: True
Encode a matrix of three messages using the \(\textrm{RS}(15, 9)\) code.
In [19]: rs = galois.ReedSolomon(15, 9) In [20]: GF = rs.field In [21]: m = GF.Random((3, rs.k)); m Out[21]: GF([[15, 1, 2, 9, 15, 7, 14, 13, 13], [14, 4, 8, 15, 12, 5, 15, 12, 15], [ 5, 15, 13, 11, 1, 11, 10, 13, 4]], order=2^4) In [22]: c = rs.encode(m); c Out[22]: GF([[15, 1, 2, 9, 15, 7, 14, 13, 13, 9, 7, 15, 3, 9, 1], [14, 4, 8, 15, 12, 5, 15, 12, 15, 1, 4, 1, 10, 0, 11], [ 5, 15, 13, 11, 1, 11, 10, 13, 4, 11, 15, 12, 7, 1, 11]], order=2^4)
Detect no errors in the valid codewords.
In [23]: rs.detect(c) Out[23]: array([False, False, False])
Detect one, two, and \(d_{min}-1\) errors in the codewords.
In [24]: rs.d Out[24]: 7 In [25]: c[0,0:1] += GF.Random(1, low=1) In [26]: c[1,0:2] += GF.Random(2, low=1) In [27]: c[2, 0:rs.d - 1] += GF.Random(rs.d - 1, low=1) In [28]: c Out[28]: GF([[ 7, 1, 2, 9, 15, 7, 14, 13, 13, 9, 7, 15, 3, 9, 1], [10, 2, 8, 15, 12, 5, 15, 12, 15, 1, 4, 1, 10, 0, 11], [ 6, 1, 11, 2, 5, 14, 10, 13, 4, 11, 15, 12, 7, 1, 11]], order=2^4) In [29]: rs.detect(c) Out[29]: array([ True, True, True])
Encode a matrix of three messages using the shortened \(\textrm{RS}(11, 5)\) code.
In [30]: rs = galois.ReedSolomon(15, 9) In [31]: GF = rs.field In [32]: m = GF.Random((3, rs.k - 4)); m Out[32]: GF([[ 7, 7, 8, 9, 1], [ 1, 5, 13, 11, 15], [10, 6, 9, 9, 9]], order=2^4) In [33]: c = rs.encode(m); c Out[33]: GF([[ 7, 7, 8, 9, 1, 11, 4, 3, 12, 13, 15], [ 1, 5, 13, 11, 15, 0, 15, 7, 14, 12, 7], [10, 6, 9, 9, 9, 5, 11, 8, 12, 4, 9]], order=2^4)
Detect no errors in the valid codewords.
In [34]: rs.detect(c) Out[34]: array([False, False, False])
Detect one, two, and \(d_{min}-1\) errors in the codewords.
In [35]: rs.d Out[35]: 7 In [36]: c[0,0:1] += GF.Random(1, low=1) In [37]: c[1,0:2] += GF.Random(2, low=1) In [38]: c[2, 0:rs.d - 1] += GF.Random(rs.d - 1, low=1) In [39]: c Out[39]: GF([[13, 7, 8, 9, 1, 11, 4, 3, 12, 13, 15], [ 8, 7, 13, 11, 15, 0, 15, 7, 14, 12, 7], [13, 8, 2, 2, 14, 15, 11, 8, 12, 4, 9]], order=2^4) In [40]: rs.detect(c) Out[40]: array([ True, True, True])