-
galois.FieldArray.log(base: ElementLike | ArrayLike | None =
None
) ndarray Computes the logarithm of the array \(x\) base \(\beta\).
Important
If the Galois field is configured to use lookup tables,
ufunc_mode == "jit-lookup"
, and this function is invoked with a base different fromprimitive_element
, then explicit calculation will be used.- Parameters¶
- base: ElementLike | ArrayLike | None =
None
¶ A primitive element(s) \(\beta\) of the finite field that is the base of the logarithm. The default is
None
which usesprimitive_element
.
- base: ElementLike | ArrayLike | None =
- Returns¶
An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.
Examples¶
Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.
In [1]: GF = galois.GF(3**5, display="poly") In [2]: alpha = GF.primitive_element; alpha Out[2]: GF(α, order=3^5) In [3]: x = GF.Random(10, low=1); x Out[3]: GF([ 2α^4 + α^3, α^3 + 2α^2 + α, α^3 + α^2 + 2α, α^4 + α^3 + 2α^2 + 2, α^4 + α^2, α^4 + 2α^3 + α^2 + α + 2, α^4 + 2α^2 + α + 1, 2α^4 + 2α^3 + 2α^2 + α + 2, 2α^4 + α^3 + α^2 + 2α + 1, 2α^4 + α^3 + α^2 + 2], order=3^5) In [4]: i = x.log(); i Out[4]: array([129, 139, 210, 66, 48, 32, 181, 162, 24, 33]) In [5]: np.array_equal(alpha ** i, x) Out[5]: True
With the default argument,
numpy.log()
andlog()
are equivalent.In [6]: np.array_equal(np.log(x), x.log()) Out[6]: True
Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.
In [7]: beta = GF.primitive_elements[-1]; beta Out[7]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5) In [8]: i = x.log(beta); i Out[8]: array([227, 57, 60, 88, 152, 182, 69, 150, 76, 165]) In [9]: np.array_equal(beta ** i, x) Out[9]: True
Compute the logarithm of a single finite field element base all of the primitive elements of the field.
In [10]: x = GF.Random(low=1); x Out[10]: GF(α^3 + 2α^2 + α + 2, order=3^5) In [11]: bases = GF.primitive_elements In [12]: i = x.log(bases); i Out[12]: array([ 51, 127, 107, 207, 71, 9, 69, 185, 3, 241, 235, 17, 123, 197, 171, 85, 233, 179, 195, 45, 173, 111, 23, 223, 1, 61, 163, 63, 193, 75, 113, 147, 161, 159, 133, 31, 205, 67, 25, 145, 151, 119, 49, 117, 19, 131, 201, 35, 97, 91, 199, 27, 137, 213, 53, 215, 189, 73, 39, 87, 21, 149, 103, 141, 125, 229, 89, 129, 43, 191, 41, 227, 167, 59, 15, 65, 177, 7, 175, 237, 217, 47, 37, 203, 109, 57, 83, 219, 93, 105, 181, 115, 211, 155, 81, 169, 157, 221, 239, 5, 183, 139, 79, 153, 13, 29, 95, 225, 135, 101]) In [13]: np.all(bases ** i == x) Out[13]: True