- class galois.FLFSR
A Fibonacci linear-feedback shift register (LFSR).
Notes¶
A Fibonacci LFSR is defined by its feedback polynomial \(f(x)\).
\[f(x) = -c_{0}x^{n} - c_{1}x^{n-1} - \dots - c_{n-2}x^{2} - c_{n-1}x + 1 = x^n c(x^{-1})\]The feedback polynomial is the reciprocal of the characteristic polynomial \(c(x)\) of the linear recurrent sequence \(y\) produced by the Fibonacci LFSR.
\[c(x) = x^{n} - c_{n-1}x^{n-1} - c_{n-2}x^{n-2} - \dots - c_{1}x - c_{0}\]\[y_t = c_{n-1}y_{t-1} + c_{n-2}y_{t-2} + \dots + c_{1}y_{t-n+2} + c_{0}y_{t-n+1}\]Fibonacci LFSR Configuration¶+--------------+<-------------+<-------------+<-------------+ | ^ ^ ^ | | | c_n-1 | c_n-2 | c_1 | c_0 | | T[0] | T[1] | T[n-2] | T[n-1] | +--------+ | +--------+ | | +--------+ | +->| S[0] |--+->| S[1] |--+--- ... ---+->| S[n-1] |--+--> y[t] +--------+ +--------+ +--------+ y[t+n-1] y[t+n-2] y[t+1]
The shift register taps \(T\) are defined left-to-right as \(T = [T_0, T_1, \dots, T_{n-2}, T_{n-1}]\). The state vector \(S\) is also defined left-to-right as \(S = [S_0, S_1, \dots, S_{n-2}, S_{n-1}]\).
In the Fibonacci configuration, the shift register taps are \(T = [c_{n-1}, c_{n-2}, \dots, c_1, c_0]\). Additionally, the state vector is equal to the next \(n\) outputs in reversed order, namely \(S = [y_{t+n-1}, y_{t+n-2}, \dots, y_{t+2}, y_{t+1}]\).
References¶
Gardner, D. 2019. “Applications of the Galois Model LFSR in Cryptography”. figshare. https://hdl.handle.net/2134/21932.
See also
Examples¶
Create a Fibonacci LFSR from a degree-4 primitive characteristic polynomial over \(\mathrm{GF}(2)\).
In [1]: c = galois.primitive_poly(2, 4); c Out[1]: Poly(x^4 + x + 1, GF(2)) In [2]: lfsr = galois.FLFSR(c.reverse()) In [3]: print(lfsr) Fibonacci LFSR: field: GF(2) feedback_poly: x^4 + x^3 + 1 characteristic_poly: x^4 + x + 1 taps: [0, 0, 1, 1] order: 4 state: [1, 1, 1, 1] initial_state: [1, 1, 1, 1]
Step the Fibonacci LFSR and produce 10 output symbols.
In [4]: lfsr.state Out[4]: GF([1, 1, 1, 1], order=2) In [5]: lfsr.step(10) Out[5]: GF([1, 1, 1, 1, 0, 0, 0, 1, 0, 0], order=2) In [6]: lfsr.state Out[6]: GF([1, 0, 1, 1], order=2)
Create a Fibonacci LFSR from a degree-4 primitive characteristic polynomial over \(\mathrm{GF}(7)\).
In [7]: c = galois.primitive_poly(7, 4); c Out[7]: Poly(x^4 + x^2 + 3x + 5, GF(7)) In [8]: lfsr = galois.FLFSR(c.reverse()) In [9]: print(lfsr) Fibonacci LFSR: field: GF(7) feedback_poly: 5x^4 + 3x^3 + x^2 + 1 characteristic_poly: x^4 + x^2 + 3x + 5 taps: [0, 6, 4, 2] order: 4 state: [1, 1, 1, 1] initial_state: [1, 1, 1, 1]
Step the Fibonacci LFSR and produce 10 output symbols.
In [10]: lfsr.state Out[10]: GF([1, 1, 1, 1], order=7) In [11]: lfsr.step(10) Out[11]: GF([1, 1, 1, 1, 5, 5, 1, 3, 1, 4], order=7) In [12]: lfsr.state Out[12]: GF([5, 5, 6, 6], order=7)
Create a Fibonacci LFSR from a degree-4 primitive characteristic polynomial over \(\mathrm{GF}(2^3)\).
In [13]: c = galois.primitive_poly(2**3, 4); c Out[13]: Poly(x^4 + x + 3, GF(2^3)) In [14]: lfsr = galois.FLFSR(c.reverse()) In [15]: print(lfsr) Fibonacci LFSR: field: GF(2^3) feedback_poly: 3x^4 + x^3 + 1 characteristic_poly: x^4 + x + 3 taps: [0, 0, 1, 3] order: 4 state: [1, 1, 1, 1] initial_state: [1, 1, 1, 1]
Step the Fibonacci LFSR and produce 10 output symbols.
In [16]: lfsr.state Out[16]: GF([1, 1, 1, 1], order=2^3) In [17]: lfsr.step(10) Out[17]: GF([1, 1, 1, 1, 2, 2, 2, 1, 4, 4], order=2^3) In [18]: lfsr.state Out[18]: GF([0, 3, 7, 7], order=2^3)
Create a Fibonacci LFSR from a degree-4 primitive characteristic polynomial over \(\mathrm{GF}(3^3)\).
In [19]: c = galois.primitive_poly(3**3, 4); c Out[19]: Poly(x^4 + x + 10, GF(3^3)) In [20]: lfsr = galois.FLFSR(c.reverse()) In [21]: print(lfsr) Fibonacci LFSR: field: GF(3^3) feedback_poly: 10x^4 + x^3 + 1 characteristic_poly: x^4 + x + 10 taps: [ 0, 0, 2, 20] order: 4 state: [1, 1, 1, 1] initial_state: [1, 1, 1, 1]
Step the Fibonacci LFSR and produce 10 output symbols.
In [22]: lfsr.state Out[22]: GF([1, 1, 1, 1], order=3^3) In [23]: lfsr.step(10) Out[23]: GF([ 1, 1, 1, 1, 19, 19, 19, 1, 25, 25], order=3^3) In [24]: lfsr.state Out[24]: GF([ 6, 24, 4, 16], order=3^3)
Constructors¶
-
FLFSR(feedback_poly: Poly, state: ArrayLike | None =
None
) Constructs a Fibonacci LFSR from its feedback polynomial \(f(x)\).
- classmethod Taps(taps: FieldArray, ...) FLFSR
Constructs a Fibonacci LFSR from its taps \(T = [c_{n-1}, c_{n-2}, \dots, c_1, c_0]\).
String representation¶
Methods¶
-
step(steps: int =
1
) FieldArray Produces the next
steps
output symbols.
- to_galois_lfsr() GLFSR
Converts the Fibonacci LFSR to a Galois LFSR that produces the same output.
Properties¶
- property characteristic_poly : Poly
The characteristic polynomial \(c(x) = x^{n} - c_{n-1}x^{n-1} - c_{n-2}x^{n-2} - \dots - c_{1}x - c_{0}\) that defines the linear recurrent sequence. The characteristic polynomial is the reciprocal of the feedback polynomial \(c(x) = x^n f(x^{-1})\).
- property feedback_poly : Poly
The feedback polynomial \(f(x) = -c_{0}x^{n} - c_{1}x^{n-1} - \dots - c_{n-2}x^{2} - c_{n-1}x + 1\) that defines the feedback arithmetic. The feedback polynomial is the reciprocal of the characteristic polynomial \(f(x) = x^n c(x^{-1})\).
- property field : Type[FieldArray]
The
FieldArray
subclass for the finite field that defines the linear arithmetic.
- property initial_state : FieldArray
The initial state vector \(S = [S_0, S_1, \dots, S_{n-2}, S_{n-1}]\).
- property order : int
The order of the linear recurrence/linear recurrent sequence. The order of a sequence is defined by the degree of the minimal polynomial that produces it.
- property state : FieldArray
The current state vector \(S = [S_0, S_1, \dots, S_{n-2}, S_{n-1}]\).
- property taps : FieldArray
The shift register taps \(T = [c_{n-1}, c_{n-2}, \dots, c_1, c_0]\). The taps of the shift register define the linear recurrence relation.