- class galois.BCH
A primitive, narrow-sense binary \(\textrm{BCH}(n, k)\) code.
A \(\textrm{BCH}(n, k)\) code is a \([n, k, d]_2\) linear block code with codeword size \(n\), message size \(k\), minimum distance \(d\), and symbols taken from an alphabet of size 2.
To create the shortened \(\textrm{BCH}(n-s, k-s)\) code, construct the full-sized \(\textrm{BCH}(n, k)\) code and then pass \(k-s\) bits into
encode()
and \(n-s\) bits intodecode()
. Shortened codes are only applicable for systematic codes.Examples¶
Construct the BCH code.
In [1]: galois.bch_valid_codes(15) Out[1]: [(15, 11, 1), (15, 7, 2), (15, 5, 3), (15, 1, 7)] In [2]: bch = galois.BCH(15, 7); bch Out[2]: <BCH Code: [15, 7, 5] over GF(2)>
Encode a message.
In [3]: m = galois.GF2.Random(bch.k); m Out[3]: GF([0, 1, 0, 0, 1, 1, 0], order=2) In [4]: c = bch.encode(m); c Out[4]: GF([0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1], order=2)
Corrupt the codeword and decode the message.
# Corrupt the first bit in the codeword In [5]: c[0] ^= 1 In [6]: dec_m = bch.decode(c); dec_m Out[6]: GF([0, 1, 0, 0, 1, 1, 0], order=2) In [7]: np.array_equal(dec_m, m) Out[7]: True
# Instruct the decoder to return the number of corrected bit errors In [8]: dec_m, N = bch.decode(c, errors=True); dec_m, N Out[8]: (GF([0, 1, 0, 0, 1, 1, 0], order=2), 1) In [9]: np.array_equal(dec_m, m) Out[9]: True
Constructors¶
-
BCH(n: int, k: int, primitive_poly: PolyLike | None =
None
, ...) Constructs a primitive, narrow-sense binary \(\textrm{BCH}(n, k)\) code.
String representation¶
Methods¶
- decode(codeword: ndarray | GF2, ...) ndarray | GF2
- decode(codeword, ...) Tuple[ndarray | GF2, integer | ndarray]
Decodes the BCH codeword \(\mathbf{c}\) into the message \(\mathbf{m}\).
- detect(codeword: ndarray | GF2) bool_ | ndarray
Detects if errors are present in the BCH codeword \(\mathbf{c}\).
- encode(message: ndarray | GF2, ...) ndarray | GF2
Encodes the message \(\mathbf{m}\) into the BCH codeword \(\mathbf{c}\).
Properties¶
- property d : int
The design distance \(d\) of the \([n, k, d]_2\) code. The minimum distance of a BCH code may be greater than the design distance, \(d_{min} \ge d\).
- property field : Type[FieldArray]
The
FieldArray
subclass for the \(\mathrm{GF}(2^m)\) field that defines the BCH code.
- property generator_poly : Poly
The generator polynomial \(g(x)\) whose roots are
roots
.
- property H : FieldArray
The parity-check matrix \(\mathbf{H}\) with shape \((2t, n)\).
- property is_narrow_sense : bool
Indicates if the BCH code is narrow sense, meaning the roots of the generator polynomial are consecutive powers of \(\alpha\) starting at 1, i.e. \(\alpha, \alpha^2, \dots, \alpha^{2t}\).
- property is_primitive : bool
Indicates if the BCH code is primitive, meaning \(n = 2^m - 1\).
- property is_systematic : bool
Indicates if the code is configured to return codewords in systematic form.
- property roots : FieldArray
The \(2t\) roots of the generator polynomial. These are consecutive powers of \(\alpha\), specifically \(\alpha, \alpha^2, \dots, \alpha^{2t}\).
- property t : int
The error-correcting capability of the code. The code can correct \(t\) bit errors in a codeword.
-
BCH(n: int, k: int, primitive_poly: PolyLike | None =