-
galois.BCH.decode(codeword: ndarray | GF2, errors: False =
False
) ndarray | GF2 - galois.BCH.decode(codeword: ndarray | GF2, errors: True) Tuple[ndarray | GF2, integer | ndarray]
Decodes the BCH codeword \(\mathbf{c}\) into the message \(\mathbf{m}\).
- Parameters¶
- codeword: ndarray | GF2¶
The codeword as either a \(n\)-length vector or \((N, n)\) matrix, where \(N\) is the number of codewords. For systematic codes, codeword lengths less than \(n\) may be provided for shortened codewords.
- errors: False =
False
¶ - errors: True
Optionally specify whether to return the number of corrected errors. The default is
False
.
- Returns¶
The decoded message as either a \(k\)-length vector or \((N, k)\) matrix.
Optional return argument of the number of corrected bit errors as either a scalar or \(n\)-length vector. Valid number of corrections are in \([0, t]\). If a codeword has too many errors and cannot be corrected, -1 will be returned.
Notes¶
The codeword vector \(\mathbf{c}\) is defined as \(\mathbf{c} = [c_{n-1}, \dots, c_1, c_0] \in \mathrm{GF}(2)^n\), which corresponds to the codeword polynomial \(c(x) = c_{n-1} x^{n-1} + \dots + c_1 x + c_0\). The message vector \(\mathbf{m}\) is defined as \(\mathbf{m} = [m_{k-1}, \dots, m_1, m_0] \in \mathrm{GF}(2)^k\), which corresponds to the message polynomial \(m(x) = m_{k-1} x^{k-1} + \dots + m_1 x + m_0\).
In decoding, the syndrome vector \(s\) is computed by \(\mathbf{s} = \mathbf{c}\mathbf{H}^T\), where \(\mathbf{H}\) is the parity-check matrix. The equivalent polynomial operation is \(s(x) = c(x)\ \textrm{mod}\ g(x)\). A syndrome of zeros indicates the received codeword is a valid codeword and there are no errors. If the syndrome is non-zero, the decoder will find an error-locator polynomial \(\sigma(x)\) and the corresponding error locations and values.
For the shortened \(\textrm{BCH}(n-s, k-s)\) code (only applicable for systematic codes), pass \(n-s\) bits into
decode()
to return the \(k-s\)-bit message.Examples¶
Encode a single message using the \(\textrm{BCH}(15, 7)\) code.
In [1]: bch = galois.BCH(15, 7) In [2]: GF = galois.GF(2) In [3]: m = GF.Random(bch.k); m Out[3]: GF([0, 1, 1, 1, 0, 1, 0], order=2) In [4]: c = bch.encode(m); c Out[4]: GF([0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0], order=2)
Corrupt \(t\) bits of the codeword.
In [5]: bch.t Out[5]: 2 In [6]: c[0:bch.t] ^= 1; c Out[6]: GF([1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0], order=2)
Decode the codeword and recover the message.
In [7]: d = bch.decode(c); d Out[7]: GF([0, 1, 1, 1, 0, 1, 0], order=2) In [8]: np.array_equal(d, m) Out[8]: True
Decode the codeword, specifying the number of corrected errors, and recover the message.
In [9]: d, e = bch.decode(c, errors=True); d, e Out[9]: (GF([0, 1, 1, 1, 0, 1, 0], order=2), 2) In [10]: np.array_equal(d, m) Out[10]: True
Encode a single message using the shortened \(\textrm{BCH}(12, 4)\) code.
In [11]: bch = galois.BCH(15, 7) In [12]: GF = galois.GF(2) In [13]: m = GF.Random(bch.k - 3); m Out[13]: GF([1, 1, 0, 1], order=2) In [14]: c = bch.encode(m); c Out[14]: GF([1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0], order=2)
Corrupt \(t\) bits of the codeword.
In [15]: bch.t Out[15]: 2 In [16]: c[0:bch.t] ^= 1; c Out[16]: GF([0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0], order=2)
Decode the codeword and recover the message.
In [17]: d = bch.decode(c); d Out[17]: GF([1, 1, 0, 1], order=2) In [18]: np.array_equal(d, m) Out[18]: True
Decode the codeword, specifying the number of corrected errors, and recover the message.
In [19]: d, e = bch.decode(c, errors=True); d, e Out[19]: (GF([1, 1, 0, 1], order=2), 2) In [20]: np.array_equal(d, m) Out[20]: True
Encode a matrix of three messages using the \(\textrm{BCH}(15, 7)\) code.
In [21]: bch = galois.BCH(15, 7) In [22]: GF = galois.GF(2) In [23]: m = GF.Random((3, bch.k)); m Out[23]: GF([[1, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 0, 0], [0, 1, 1, 1, 0, 0, 0]], order=2) In [24]: c = bch.encode(m); c Out[24]: GF([[1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1], [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0], [0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1]], order=2)
Corrupt the codeword. Add zero errors to the first codeword, one to the second, and two to the third.
In [25]: c[1,0:1] ^= 1 In [26]: c[2,0:2] ^= 1 In [27]: c Out[27]: GF([[1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0], [1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1]], order=2)
Decode the codeword and recover the message.
In [28]: d = bch.decode(c); d Out[28]: GF([[1, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 0, 0], [0, 1, 1, 1, 0, 0, 0]], order=2) In [29]: np.array_equal(d, m) Out[29]: True
Decode the codeword, specifying the number of corrected errors, and recover the message.
In [30]: d, e = bch.decode(c, errors=True); d, e Out[30]: (GF([[1, 0, 0, 1, 1, 1, 1], [1, 0, 0, 0, 1, 0, 0], [0, 1, 1, 1, 0, 0, 0]], order=2), array([0, 1, 2])) In [31]: np.array_equal(d, m) Out[31]: True
Encode a matrix of three messages using the shortened \(\textrm{BCH}(12, 4)\) code.
In [32]: bch = galois.BCH(15, 7) In [33]: GF = galois.GF(2) In [34]: m = GF.Random((3, bch.k - 3)); m Out[34]: GF([[0, 1, 1, 1], [0, 0, 1, 1], [0, 0, 0, 0]], order=2) In [35]: c = bch.encode(m); c Out[35]: GF([[0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0], [0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], order=2)
Corrupt the codeword. Add zero errors to the first codeword, one to the second, and two to the third.
In [36]: c[1,0:1] ^= 1 In [37]: c[2,0:2] ^= 1 In [38]: c Out[38]: GF([[0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0], [1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0], [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], order=2)
Decode the codeword and recover the message.
In [39]: d = bch.decode(c); d Out[39]: GF([[0, 1, 1, 1], [0, 0, 1, 1], [0, 0, 0, 0]], order=2) In [40]: np.array_equal(d, m) Out[40]: True
Decode the codeword, specifying the number of corrected errors, and recover the message.
In [41]: d, e = bch.decode(c, errors=True); d, e Out[41]: (GF([[0, 1, 1, 1], [0, 0, 1, 1], [0, 0, 0, 0]], order=2), array([0, 1, 2])) In [42]: np.array_equal(d, m) Out[42]: True