galois.primitive_roots¶
-
galois.primitive_roots(n: int, start: int =
1
, stop: int | None =None
, reverse: bool =False
) Iterator[int] ¶ Iterates through all primitive roots modulo \(n\) in the range
[start, stop)
.- Parameters
- n: int¶
A positive integer.
- start: int =
1
¶ Starting value (inclusive) in the search for a primitive root. The default is 1.
- stop: int | None =
None
¶ Stopping value (exclusive) in the search for a primitive root. The default is
None
which corresponds to \(n\).- reverse: bool =
False
¶ Indicates to return the primitive roots from largest to smallest. The default is
False
.
- Returns
An iterator over the primitive roots modulo \(n\) in the specified range.
See also
primitive_root
,is_primitive_root
,is_cyclic
,totatives
,euler_phi
,carmichael_lambda
Notes
The integer \(g\) is a primitive root modulo \(n\) if the totatives of \(n\) can be generated by the powers of \(g\). The totatives of \(n\) are the positive integers in \([1, n)\) that are coprime with \(n\).
Alternatively said, \(g\) is a primitive root modulo \(n\) if and only if \(g\) is a generator of the multiplicative group of integers modulo \(n\) \((\mathbb{Z}/n\mathbb{Z}){^\times} = \{1, g, g^2, \dots, g^{\phi(n)-1}\}\), where \(\phi(n)\) is order of the group.
If \((\mathbb{Z}/n\mathbb{Z}){^\times}\) is cyclic, the number of primitive roots modulo \(n\) is given by \(\phi(\phi(n))\).
References
Shoup, V. Searching for primitive roots in finite fields. https://www.ams.org/journals/mcom/1992-58-197/S0025-5718-1992-1106981-9/S0025-5718-1992-1106981-9.pdf
Hua, L.K. On the least primitive root of a prime. https://www.ams.org/journals/bull/1942-48-10/S0002-9904-1942-07767-6/S0002-9904-1942-07767-6.pdf
http://www.numbertheory.org/courses/MP313/lectures/lecture7/page1.html
Examples
All primitive roots modulo \(31\). You may also use
tuple()
on the returned generator.In [1]: list(galois.primitive_roots(31)) Out[1]: [3, 11, 12, 13, 17, 21, 22, 24]
There are no primitive roots modulo \(30\).
In [2]: list(galois.primitive_roots(30)) Out[2]: []
Show the each primitive root modulo \(22\) generates the multiplicative group \((\mathbb{Z}/22\mathbb{Z}){^\times}\).
In [3]: n = 22 In [4]: Znx = galois.totatives(n); Znx Out[4]: [1, 3, 5, 7, 9, 13, 15, 17, 19, 21] In [5]: phi = galois.euler_phi(n); phi Out[5]: 10 In [6]: for root in galois.primitive_roots(22): ...: span = set(pow(root, i, n) for i in range(0, phi)) ...: print(f"Element: {root:>2}, Span: {span}") ...: Element: 7, Span: {1, 3, 5, 7, 9, 13, 15, 17, 19, 21} Element: 13, Span: {1, 3, 5, 7, 9, 13, 15, 17, 19, 21} Element: 17, Span: {1, 3, 5, 7, 9, 13, 15, 17, 19, 21} Element: 19, Span: {1, 3, 5, 7, 9, 13, 15, 17, 19, 21}
Find the three largest primitive roots modulo \(31\) in reversed order.
In [7]: generator = galois.primitive_roots(31, reverse=True); generator Out[7]: <generator object primitive_roots at 0x7fb712222c10> In [8]: [next(generator) for _ in range(3)] Out[8]: [24, 22, 21]
Loop over all the primitive roots in reversed order, only finding them as needed. The search cost for the roots that would have been found after the
break
condition is never incurred.In [9]: for root in galois.primitive_roots(31, reverse=True): ...: print(root) ...: if root % 7 == 0: # Arbitrary early exit condition ...: break ...: 24 22 21