galois.primitive_polys¶
-
galois.primitive_polys(order: int, degree: int, reverse: bool =
False
) Iterator[Poly] ¶ Iterates through all monic primitive polynomials \(f(x)\) over \(\mathrm{GF}(q)\) with degree \(m\).
- Parameters
- Returns
An iterator over all degree-\(m\) monic primitive polynomials over \(\mathrm{GF}(q)\).
See also
Notes
If \(f(x)\) is a primitive polynomial over \(\mathrm{GF}(q)\) and \(a \in \mathrm{GF}(q) \backslash \{0\}\), then \(a \cdot f(x)\) is also primitive.
In addition to other applications, \(f(x)\) produces the field extension \(\mathrm{GF}(q^m)\) of \(\mathrm{GF}(q)\). Since \(f(x)\) is primitive, \(x\) is a primitive element \(\alpha\) of \(\mathrm{GF}(q^m)\) such that \(\mathrm{GF}(q^m) = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{q^m-2}\}\).
Examples
All monic primitive polynomials over \(\mathrm{GF}(3)\) with degree \(4\). You may also use
tuple()
on the returned generator.In [1]: list(galois.primitive_polys(3, 4)) Out[1]: [Poly(x^4 + x + 2, GF(3)), Poly(x^4 + 2x + 2, GF(3)), Poly(x^4 + x^3 + 2, GF(3)), Poly(x^4 + x^3 + x^2 + 2x + 2, GF(3)), Poly(x^4 + x^3 + 2x^2 + 2x + 2, GF(3)), Poly(x^4 + 2x^3 + 2, GF(3)), Poly(x^4 + 2x^3 + x^2 + x + 2, GF(3)), Poly(x^4 + 2x^3 + 2x^2 + x + 2, GF(3))]
Loop over all the polynomials in reversed order, only finding them as needed. The search cost for the polynomials that would have been found after the
break
condition is never incurred.In [2]: for poly in galois.primitive_polys(3, 4, reverse=True): ...: if poly.coeffs[1] < 2: # Early exit condition ...: break ...: print(poly) ...: x^4 + 2x^3 + 2x^2 + x + 2 x^4 + 2x^3 + x^2 + x + 2 x^4 + 2x^3 + 2
Or, manually iterate over the generator.
In [3]: generator = galois.primitive_polys(3, 4, reverse=True); generator Out[3]: <generator object primitive_polys at 0x7fb711af4ba0> In [4]: next(generator) Out[4]: Poly(x^4 + 2x^3 + 2x^2 + x + 2, GF(3)) In [5]: next(generator) Out[5]: Poly(x^4 + 2x^3 + x^2 + x + 2, GF(3)) In [6]: next(generator) Out[6]: Poly(x^4 + 2x^3 + 2, GF(3))