galois.primitive_poly¶
-
galois.primitive_poly(order: int, degree: int, method: 'min' | 'max' | 'random' =
'min'
) Poly ¶ Returns a monic primitive polynomial \(f(x)\) over \(\mathrm{GF}(q)\) with degree \(m\).
- Parameters
- order: int¶
The prime power order \(q\) of the field \(\mathrm{GF}(q)\) that the polynomial is over.
- degree: int¶
The degree \(m\) of the desired primitive polynomial.
- method: 'min' | 'max' | 'random' =
'min'
¶ The search method for finding the primitive polynomial.
"min"
(default): Returns the lexicographically-minimal monic primitive polynomial."max"
: Returns the lexicographically-maximal monic primitive polynomial."random"
: Returns a randomly generated degree-\(m\) monic primitive polynomial.
- Returns
The degree-\(m\) monic primitive polynomial over \(\mathrm{GF}(q)\).
See also
Notes
If \(f(x)\) is a primitive polynomial over \(\mathrm{GF}(q)\) and \(a \in \mathrm{GF}(q) \backslash \{0\}\), then \(a \cdot f(x)\) is also primitive.
In addition to other applications, \(f(x)\) produces the field extension \(\mathrm{GF}(q^m)\) of \(\mathrm{GF}(q)\). Since \(f(x)\) is primitive, \(x\) is a primitive element \(\alpha\) of \(\mathrm{GF}(q^m)\) such that \(\mathrm{GF}(q^m) = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{q^m-2}\}\).
Examples
Find the lexicographically-minimal monic primitive polynomial.
In [1]: galois.primitive_poly(7, 3) Out[1]: Poly(x^3 + 3x + 2, GF(7))
Find the lexicographically-maximal monic primitive polynomial.
In [2]: galois.primitive_poly(7, 3, method="max") Out[2]: Poly(x^3 + 6x^2 + 6x + 4, GF(7))
Find a random monic primitive polynomial.
In [3]: galois.primitive_poly(7, 3, method="random") Out[3]: Poly(x^3 + 2x^2 + 6x + 4, GF(7))
Notice
primitive_poly()
returns the lexicographically-minimal primitive polynomial butconway_poly()
returns the lexicographically-minimal primitive polynomial that is consistent with smaller Conway polynomials.This is sometimes the same polynomial.
In [4]: galois.primitive_poly(2, 4) Out[4]: Poly(x^4 + x + 1, GF(2)) In [5]: galois.conway_poly(2, 4) Out[5]: Poly(x^4 + x + 1, GF(2))
However, it is not always.
In [6]: galois.primitive_poly(7, 10) Out[6]: Poly(x^10 + 5x^2 + x + 5, GF(7)) In [7]: galois.conway_poly(7, 10) Out[7]: Poly(x^10 + x^6 + x^5 + 4x^4 + x^3 + 2x^2 + 3x + 3, GF(7))
Find a random monic primitive polynomial over \(\mathrm{GF}(7)\) with degree \(5\).
In [8]: f = galois.primitive_poly(7, 5, method="random"); f Out[8]: Poly(x^5 + 4x^4 + 5x^3 + 2x^2 + 4, GF(7)) In [9]: f.is_primitive() Out[9]: True
Monic primitive polynomials scaled by non-zero field elements (now non-monic) are also primitive.
In [10]: GF = galois.GF(7) In [11]: g = f * GF(3); g Out[11]: Poly(3x^5 + 5x^4 + x^3 + 6x^2 + 5, GF(7)) In [12]: g.is_primitive() Out[12]: True