galois.lcm

galois.lcm(*values: int) int
galois.lcm(*values: Poly) Poly

Computes the least common multiple of the arguments.

Parameters
*values

Each argument must be an integer or polynomial.

Returns

The least common multiple of the arguments.

See also

gcd, egcd, prod

Examples

Compute the LCM of three integers.

In [1]: galois.lcm(2, 4, 14)
Out[1]: 28

Generate irreducible polynomials over \(\mathrm{GF}(7)\).

In [2]: GF = galois.GF(7)

In [3]: f1 = galois.irreducible_poly(7, 1); f1
Out[3]: Poly(x, GF(7))

In [4]: f2 = galois.irreducible_poly(7, 2); f2
Out[4]: Poly(x^2 + 1, GF(7))

In [5]: f3 = galois.irreducible_poly(7, 3); f3
Out[5]: Poly(x^3 + 2, GF(7))

Compute the LCM of three polynomials \(f_1(x)^2 f_2(x)\), \(f_1(x) f_3(x)\), and \(f_2(x) f_3(x)\), which is \(f_1(x)^2 f_2(x) f_3(x)\).

In [6]: galois.lcm(f1**2 * f2, f1 * f3, f2 * f3)
Out[6]: Poly(x^7 + x^5 + 2x^4 + 2x^2, GF(7))

In [7]: f1**2 * f2 * f3
Out[7]: Poly(x^7 + x^5 + 2x^4 + 2x^2, GF(7))

Last update: May 16, 2022