galois.is_smooth¶
- galois.is_smooth(n: int, B: int) bool ¶
Determines if the integer \(n\) is \(B\)-smooth.
- Parameters
- Returns
True
if \(n\) is \(B\)-smooth.
See also
Notes
An integer \(n\) with prime factorization \(n = p_1^{e_1} \dots p_k^{e_k}\) is \(B\)-smooth if \(p_k \le B\). The \(2\)-smooth numbers are the powers of \(2\). The \(5\)-smooth numbers are known as regular numbers. The \(7\)-smooth numbers are known as humble numbers or highly composite numbers.
Examples
In [1]: galois.is_smooth(2**10, 2) Out[1]: True In [2]: galois.is_smooth(10, 5) Out[2]: True In [3]: galois.is_smooth(12, 5) Out[3]: True In [4]: galois.is_smooth(60**2, 5) Out[4]: True
Last update:
Apr 21, 2022