galois.is_prime¶
- galois.is_prime(n: int) bool ¶
Determines if \(n\) is prime.
See also
Notes
This algorithm will first run Fermat’s primality test to check \(n\) for compositeness, see
fermat_primality_test()
. If it determines \(n\) is composite, the function will quickly return.If Fermat’s primality test returns
True
, then \(n\) could be prime or pseudoprime. If so, then the algorithm will run 10 rounds of Miller-Rabin’s primality test, seemiller_rabin_primality_test()
. With this many rounds, a result ofTrue
should have high probability of \(n\) being a true prime, not a pseudoprime.Examples
In [1]: galois.is_prime(13) Out[1]: True In [2]: galois.is_prime(15) Out[2]: False
The algorithm is also efficient on very large \(n\).
In [3]: galois.is_prime(1000000000000000035000061) Out[3]: True
Last update:
Apr 21, 2022