galois.is_powersmooth¶
- galois.is_powersmooth(n: int, B: int) bool ¶
Determines if the integer \(n\) is \(B\)-powersmooth.
- Parameters
- Returns
True
if \(n\) is \(B\)-powersmooth.
Notes
An integer \(n\) with prime factorization \(n = p_1^{e_1} \dots p_k^{e_k}\) is \(B\)-powersmooth if \(p_i^{e_i} \le B\) for \(1 \le i \le k\).
Examples
Comparison of \(B\)-smooth and \(B\)-powersmooth. Necessarily, any \(n\) that is \(B\)-powersmooth must be \(B\)-smooth.
In [1]: galois.is_smooth(2**4 * 3**2 * 5, 5) Out[1]: True In [2]: galois.is_powersmooth(2**4 * 3**2 * 5, 5) Out[2]: False
Last update:
Apr 21, 2022