galois.irreducible_poly¶
-
galois.irreducible_poly(order: int, degree: int, method: 'min' | 'max' | 'random' =
'min'
) Poly ¶ Returns a monic irreducible polynomial
over with degree .- Parameters
- order: int¶
The prime power order
of the field that the polynomial is over.- degree: int¶
The degree
of the desired irreducible polynomial.- method: 'min' | 'max' | 'random' =
'min'
¶ The search method for finding the irreducible polynomial.
"min"
(default): Returns the lexicographically-minimal monic irreducible polynomial."max"
: Returns the lexicographically-maximal monic irreducible polynomial."random"
: Returns a randomly generated degree- monic irreducible polynomial.
- Returns
The degree-
monic irreducible polynomial over .
See also
Notes
If
is an irreducible polynomial over and , then is also irreducible.In addition to other applications,
produces the field extension of .Examples
Find the lexicographically-minimal monic irreducible polynomial.
In [1]: galois.irreducible_poly(7, 3) Out[1]: Poly(x^3 + 2, GF(7))
Find the lexicographically-maximal monic irreducible polynomial.
In [2]: galois.irreducible_poly(7, 3, method="max") Out[2]: Poly(x^3 + 6x^2 + 6x + 4, GF(7))
Find a random monic irreducible polynomial.
In [3]: galois.irreducible_poly(7, 3, method="random") Out[3]: Poly(x^3 + 2x^2 + 1, GF(7))
Find a random monic irreducible polynomial over
with degree .In [4]: f = galois.irreducible_poly(7, 5, method="random"); f Out[4]: Poly(x^5 + 6x^3 + 2x^2 + 2x + 4, GF(7)) In [5]: f.is_irreducible() Out[5]: True
Monic irreducible polynomials scaled by non-zero field elements (now non-monic) are also irreducible.
In [6]: GF = galois.GF(7) In [7]: g = f * GF(3); g Out[7]: Poly(3x^5 + 4x^3 + 6x^2 + 6x + 5, GF(7)) In [8]: g.is_irreducible() Out[8]: True