galois.carmichael_lambda¶
- galois.carmichael_lambda(n: int) int ¶
Finds the smallest positive integer \(m\) such that \(a^m \equiv 1\ (\textrm{mod}\ n)\) for every integer \(a\) in \([1, n)\) that is coprime to \(n\).
This function implements the Carmichael function \(\lambda(n)\).
- Parameters
- Returns
The smallest positive integer \(m\) such that \(a^m \equiv 1 (\textrm{mod}\ n)\) for every \(a\) in \([1, n)\) that is coprime to \(n\).
References
Examples
The Carmichael lambda function and Euler totient function are often equal. However, there are notable exceptions.
In [1]: [galois.euler_phi(n) for n in range(1, 20)] Out[1]: [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18] In [2]: [galois.carmichael_lambda(n) for n in range(1, 20)] Out[2]: [1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4, 4, 16, 6, 18]
For prime \(n\), \(\phi(n) = \lambda(n) = n - 1\). And for most composite \(n\), \(\phi(n) = \lambda(n) < n - 1\).
In [3]: n = 9 In [4]: phi = galois.euler_phi(n); phi Out[4]: 6 In [5]: lambda_ = galois.carmichael_lambda(n); lambda_ Out[5]: 6 In [6]: totatives = galois.totatives(n); totatives Out[6]: [1, 2, 4, 5, 7, 8] In [7]: for power in range(1, phi + 1): ...: y = [pow(a, power, n) for a in totatives] ...: print("Power {}: {} (mod {})".format(power, y, n)) ...: Power 1: [1, 2, 4, 5, 7, 8] (mod 9) Power 2: [1, 4, 7, 7, 4, 1] (mod 9) Power 3: [1, 8, 1, 8, 1, 8] (mod 9) Power 4: [1, 7, 4, 4, 7, 1] (mod 9) Power 5: [1, 5, 7, 2, 4, 8] (mod 9) Power 6: [1, 1, 1, 1, 1, 1] (mod 9) In [8]: galois.is_cyclic(n) Out[8]: True
When \(\phi(n) \ne \lambda(n)\), the multiplicative group \((\mathbb{Z}/n\mathbb{Z}){^\times}\) is not cyclic. See
is_cyclic()
.In [9]: n = 8 In [10]: phi = galois.euler_phi(n); phi Out[10]: 4 In [11]: lambda_ = galois.carmichael_lambda(n); lambda_ Out[11]: 2 In [12]: totatives = galois.totatives(n); totatives Out[12]: [1, 3, 5, 7] In [13]: for power in range(1, phi + 1): ....: y = [pow(a, power, n) for a in totatives] ....: print("Power {}: {} (mod {})".format(power, y, n)) ....: Power 1: [1, 3, 5, 7] (mod 8) Power 2: [1, 1, 1, 1] (mod 8) Power 3: [1, 3, 5, 7] (mod 8) Power 4: [1, 1, 1, 1] (mod 8) In [14]: galois.is_cyclic(n) Out[14]: False
Last update:
Apr 21, 2022