Galois Fields¶
This section contains classes and functions for creating Galois field arrays.
Galois field classes¶
Class factory functions¶
  | 
Creates a   | 
  | 
Alias of   | 
Abstract base classes¶
  | 
A   | 
Pre-made FieldArray subclasses¶
  | 
A   | 
Prime field functions¶
Primitive roots¶
  | 
Finds a primitive root modulo \(n\) in the range   | 
  | 
Iterates through all primitive roots modulo \(n\) in the range   | 
  | 
Determines if \(g\) is a primitive root modulo \(n\).  | 
Extension field functions¶
Irreducible polynomials¶
  | 
Returns a monic irreducible polynomial \(f(x)\) over \(\mathrm{GF}(q)\) with degree \(m\).  | 
  | 
Iterates through all monic irreducible polynomials \(f(x)\) over \(\mathrm{GF}(q)\) with degree \(m\).  | 
Primitive polynomials¶
  | 
Returns a monic primitive polynomial \(f(x)\) over \(\mathrm{GF}(q)\) with degree \(m\).  | 
  | 
Iterates through all monic primitive polynomials \(f(x)\) over \(\mathrm{GF}(q)\) with degree \(m\).  | 
  | 
Returns the Conway polynomial \(C_{p,m}(x)\) over \(\mathrm{GF}(p)\) with degree \(m\).  | 
  | 
Returns Matlab's default primitive polynomial \(f(x)\) over \(\mathrm{GF}(p)\) with degree \(m\).  | 
Primitive elements¶
  | 
Finds a primitive element \(g\) of the Galois field \(\mathrm{GF}(q^m)\) with degree-\(m\) irreducible polynomial \(f(x)\) over \(\mathrm{GF}(q)\).  | 
  | 
Finds all primitive elements \(g\) of the Galois field \(\mathrm{GF}(q^m)\) with degree-\(m\) irreducible polynomial \(f(x)\) over \(\mathrm{GF}(q)\).  | 
  | 
Determines if \(g\) is a primitive element of the Galois field \(\mathrm{GF}(q^m)\) with degree-\(m\) irreducible polynomial \(f(x)\) over \(\mathrm{GF}(q)\).  |