Galois Fields¶
This section contains classes and functions for creating Galois field arrays.
Galois field classes¶
Class factory functions¶
|
Creates a |
|
Alias of |
Abstract base classes¶
|
A |
Pre-made FieldArray
subclasses¶
|
A |
Prime field functions¶
Primitive roots¶
|
Finds a primitive root modulo \(n\) in the range |
|
Iterates through all primitive roots modulo \(n\) in the range |
|
Determines if \(g\) is a primitive root modulo \(n\). |
Extension field functions¶
Irreducible polynomials¶
|
Returns a monic irreducible polynomial \(f(x)\) over \(\mathrm{GF}(q)\) with degree \(m\). |
|
Iterates through all monic irreducible polynomials \(f(x)\) over \(\mathrm{GF}(q)\) with degree \(m\). |
Primitive polynomials¶
|
Returns a monic primitive polynomial \(f(x)\) over \(\mathrm{GF}(q)\) with degree \(m\). |
|
Iterates through all monic primitive polynomials \(f(x)\) over \(\mathrm{GF}(q)\) with degree \(m\). |
|
Returns the Conway polynomial \(C_{p,m}(x)\) over \(\mathrm{GF}(p)\) with degree \(m\). |
|
Returns Matlab's default primitive polynomial \(f(x)\) over \(\mathrm{GF}(p)\) with degree \(m\). |
Primitive elements¶
|
Finds a primitive element \(g\) of the Galois field \(\mathrm{GF}(q^m)\) with degree-\(m\) irreducible polynomial \(f(x)\) over \(\mathrm{GF}(q)\). |
|
Finds all primitive elements \(g\) of the Galois field \(\mathrm{GF}(q^m)\) with degree-\(m\) irreducible polynomial \(f(x)\) over \(\mathrm{GF}(q)\). |
|
Determines if \(g\) is a primitive element of the Galois field \(\mathrm{GF}(q^m)\) with degree-\(m\) irreducible polynomial \(f(x)\) over \(\mathrm{GF}(q)\). |