galois.random_prime¶
- galois.random_prime(bits)¶
Returns a random prime \(p\) with \(b\) bits, such that \(2^b \le p < 2^{b+1}\).
This function randomly generates integers with \(b\) bits and uses the primality tests in
galois.is_prime()
to determine if \(p\) is prime.See also
References
Examples
Generate a random 1024-bit prime.
In [1]: p = galois.random_prime(1024); p Out[1]: 344206710696704157851286433687196382635834149179088500548097452327661092824129168866249234650268300467094172488690701399199815935882068248748807486168049235451558544226683205604194893990924442824193337263762660822514886065643621954890240085849797888012026564004349486486165895805282897085258023694509060019387 In [2]: galois.is_prime(p) Out[2]: True
$ openssl prime 236861787926957382206996886087214592029752524078026392358936844479667423570833116126506927878773110287700754280996224768092589904231910149528080012692722763539766058401127758399272786475279348968866620857161889678512852050561604969208679095086283103827661300743342847921567132587459205365243815835763830067933 1514D68EDB7C650F1FF713531A1A43255A4BE6D66EE1FDBD96F4EB32757C1B1BAF16A5933E24D45FAD6C6A814F3C8C14F3CB98F24FEA74C43C349D6FA3AB76EB0156811A1FBAA64EB4AC525CCEF9278AF78886DC6DBF46C4463A34C0E53B0FA2F784BB2DC5FDF076BB6E145AA15AA6D616ACC1D5F95B8BE757670B9AAF53292DD (236861787926957382206996886087214592029752524078026392358936844479667423570833116126506927878773110287700754280996224768092589904231910149528080012692722763539766058401127758399272786475279348968866620857161889678512852050561604969208679095086283103827661300743342847921567132587459205365243815835763830067933) is prime
Last update:
Feb 09, 2022