galois.lcm¶
- galois.lcm(*values)¶
Computes the least common multiple of the arguments.
- Parameters¶
- *values : int or galois.Poly
Each argument must be an integer or polynomial.
- Returns¶
The least common multiple of the arguments.
- Return type¶
int or galois.Poly
Examples
Compute the LCM of three integers.
In [1]: galois.lcm(2, 4, 14) Out[1]: 28
Generate irreducible polynomials over \(\mathrm{GF}(7)\).
In [2]: GF = galois.GF(7) In [3]: p1 = galois.irreducible_poly(7, 1); p1 Out[3]: Poly(x, GF(7)) In [4]: p2 = galois.irreducible_poly(7, 2); p2 Out[4]: Poly(x^2 + 1, GF(7)) In [5]: p3 = galois.irreducible_poly(7, 3); p3 Out[5]: Poly(x^3 + 2, GF(7))
Compute the LCM of three polynomials.
In [6]: a = p1**2 * p2; a Out[6]: Poly(x^4 + x^2, GF(7)) In [7]: b = p1 * p3; b Out[7]: Poly(x^4 + 2x, GF(7)) In [8]: c = p2 * p3; c Out[8]: Poly(x^5 + x^3 + 2x^2 + 2, GF(7)) In [9]: galois.lcm(a, b, c) Out[9]: Poly(x^7 + x^5 + 2x^4 + 2x^2, GF(7)) In [10]: p1**2 * p2 * p3 Out[10]: Poly(x^7 + x^5 + 2x^4 + 2x^2, GF(7))
Last update:
Feb 09, 2022