galois.divisor_sigma¶
-
galois.divisor_sigma(n, k=
1
)¶ Returns the sum of \(k\)-th powers of the positive divisors of \(n\).
Notes
This function implements the \(\sigma_k(n)\) function. It is defined as:
\[\sigma_k(n) = \sum_{d\ |\ n} d^k\]Examples
In [1]: galois.divisors(9) Out[1]: [1, 3, 9] In [2]: galois.divisor_sigma(9, k=0) Out[2]: 3 In [3]: galois.divisor_sigma(9, k=1) Out[3]: 13 In [4]: galois.divisor_sigma(9, k=2) Out[4]: 91
Last update:
Feb 09, 2022