- galois.typing.IterableLike
A
Union
representing iterable objects that can be coerced into a Galois field array.Union¶
Sequence
[ElementLike
]: An iterable of elements.In [1]: GF = galois.GF(3**5) In [2]: GF([17, 4]) Out[2]: GF([17, 4], order=3^5) # Mix and match integers and strings In [3]: GF([17, "x + 1"]) Out[3]: GF([17, 4], order=3^5)
In [4]: GF = galois.GF(3**5, repr="poly") In [5]: GF([17, 4]) Out[5]: GF([α^2 + 2α + 2, α + 1], order=3^5) # Mix and match integers and strings In [6]: GF([17, "x + 1"]) Out[6]: GF([α^2 + 2α + 2, α + 1], order=3^5)
In [7]: GF = galois.GF(3**5, repr="power") In [8]: GF([17, 4]) Out[8]: GF([α^222, α^69], order=3^5) # Mix and match integers and strings In [9]: GF([17, "x + 1"]) Out[9]: GF([α^222, α^69], order=3^5)
Sequence
[IterableLike
]: A recursive iterable of iterables of elements.In [10]: GF = galois.GF(3**5) In [11]: GF([[17, 4], [148, 205]]) Out[11]: GF([[ 17, 4], [148, 205]], order=3^5) # Mix and match integers and strings In [12]: GF([["x^2 + 2x + 2", 4], ["x^4 + 2x^3 + x^2 + x + 1", 205]]) Out[12]: GF([[ 17, 4], [148, 205]], order=3^5)
In [13]: GF = galois.GF(3**5, repr="poly") In [14]: GF([[17, 4], [148, 205]]) Out[14]: GF([[ α^2 + 2α + 2, α + 1], [ α^4 + 2α^3 + α^2 + α + 1, 2α^4 + α^3 + α^2 + 2α + 1]], order=3^5) # Mix and match integers and strings In [15]: GF([["x^2 + 2x + 2", 4], ["x^4 + 2x^3 + x^2 + x + 1", 205]]) Out[15]: GF([[ α^2 + 2α + 2, α + 1], [ α^4 + 2α^3 + α^2 + α + 1, 2α^4 + α^3 + α^2 + 2α + 1]], order=3^5)
In [16]: GF = galois.GF(3**5, repr="power") In [17]: GF([[17, 4], [148, 205]]) Out[17]: GF([[α^222, α^69], [ α^54, α^24]], order=3^5) # Mix and match integers and strings In [18]: GF([["x^2 + 2x + 2", 4], ["x^4 + 2x^3 + x^2 + x + 1", 205]]) Out[18]: GF([[α^222, α^69], [ α^54, α^24]], order=3^5)
Alias¶
alias of
Union
[Sequence
[Union
[int
,str
,Array
]],Sequence
[IterableLike
]]