- galois.typing.ArrayLike
A
Union
representing objects that can be coerced into a Galois field array.Union¶
IterableLike
: A recursive iterable of iterables of elements.In [1]: GF = galois.GF(3**5) In [2]: GF([[17, 4], [148, 205]]) Out[2]: GF([[ 17, 4], [148, 205]], order=3^5) # Mix and match integers and strings In [3]: GF([["x^2 + 2x + 2", 4], ["x^4 + 2x^3 + x^2 + x + 1", 205]]) Out[3]: GF([[ 17, 4], [148, 205]], order=3^5)
In [4]: GF = galois.GF(3**5, repr="poly") In [5]: GF([[17, 4], [148, 205]]) Out[5]: GF([[ α^2 + 2α + 2, α + 1], [ α^4 + 2α^3 + α^2 + α + 1, 2α^4 + α^3 + α^2 + 2α + 1]], order=3^5) # Mix and match integers and strings In [6]: GF([["x^2 + 2x + 2", 4], ["x^4 + 2x^3 + x^2 + x + 1", 205]]) Out[6]: GF([[ α^2 + 2α + 2, α + 1], [ α^4 + 2α^3 + α^2 + α + 1, 2α^4 + α^3 + α^2 + 2α + 1]], order=3^5)
In [7]: GF = galois.GF(3**5, repr="power") In [8]: GF([[17, 4], [148, 205]]) Out[8]: GF([[α^222, α^69], [ α^54, α^24]], order=3^5) # Mix and match integers and strings In [9]: GF([["x^2 + 2x + 2", 4], ["x^4 + 2x^3 + x^2 + x + 1", 205]]) Out[9]: GF([[α^222, α^69], [ α^54, α^24]], order=3^5)
ndarray
: A NumPy array of integers, representing finite field elements in their integer representation.In [10]: x = np.array([[17, 4], [148, 205]]); x Out[10]: array([[ 17, 4], [148, 205]]) In [11]: GF(x) Out[11]: GF([[ 17, 4], [148, 205]], order=3^5)
In [12]: x = np.array([[17, 4], [148, 205]]); x Out[12]: array([[ 17, 4], [148, 205]]) In [13]: GF(x) Out[13]: GF([[ α^2 + 2α + 2, α + 1], [ α^4 + 2α^3 + α^2 + α + 1, 2α^4 + α^3 + α^2 + 2α + 1]], order=3^5)
In [14]: x = np.array([[17, 4], [148, 205]]); x Out[14]: array([[ 17, 4], [148, 205]]) In [15]: GF(x) Out[15]: GF([[α^222, α^69], [ α^54, α^24]], order=3^5)
Array
: A previously createdArray
object. No coercion is necessary.
Alias¶
alias of
Union
[Sequence
[Union
[int
,str
,Array
]],Sequence
[IterableLike
],ndarray
,Array
]