-
galois.primitive_element(irreducible_poly: Poly, method: 'min' | 'max' | 'random' =
'min'
) Poly Finds a primitive element \(g\) of the Galois field \(\mathrm{GF}(q^m)\) with degree-\(m\) irreducible polynomial \(f(x)\) over \(\mathrm{GF}(q)\).
- Parameters:¶
- Returns:¶
A primitive element \(g\) of \(\mathrm{GF}(q^m)\) with irreducible polynomial \(f(x)\). The primitive element \(g\) is a polynomial over \(\mathrm{GF}(q)\) with degree less than \(m\).
Examples¶
Construct the extension field \(\mathrm{GF}(7^5)\).
In [1]: f = galois.irreducible_poly(7, 5, method="max"); f Out[1]: Poly(x^5 + 6x^4 + 6x^3 + 6x^2 + 6x + 6, GF(7)) In [2]: GF = galois.GF(7**5, irreducible_poly=f, repr="poly") In [3]: print(GF.properties) Galois Field: name: GF(7^5) characteristic: 7 degree: 5 order: 16807 irreducible_poly: x^5 + 6x^4 + 6x^3 + 6x^2 + 6x + 6 is_primitive_poly: False primitive_element: x + 3
Find the smallest primitive element for the degree-5 extension of \(\mathrm{GF}(7)\) with irreducible polynomial \(f(x)\).
In [4]: g = galois.primitive_element(f); g Out[4]: Poly(x + 3, GF(7)) # Convert the polynomial over GF(7) into an element of GF(7^5) In [5]: g = GF(int(g)); g Out[5]: GF(x + 3, order=7^5) In [6]: g.multiplicative_order() == GF.order - 1 Out[6]: True
Find the largest primitive element for the degree-5 extension of \(\mathrm{GF}(7)\) with irreducible polynomial \(f(x)\).
In [7]: g = galois.primitive_element(f, method="max"); g Out[7]: Poly(6x^4 + 6x^3 + 6x^2 + 6x + 3, GF(7)) # Convert the polynomial over GF(7) into an element of GF(7^5) In [8]: g = GF(int(g)); g Out[8]: GF(6x^4 + 6x^3 + 6x^2 + 6x + 3, order=7^5) In [9]: g.multiplicative_order() == GF.order - 1 Out[9]: True
Find a random primitive element for the degree-5 extension of \(\mathrm{GF}(7)\) with irreducible polynomial \(f(x)\).
In [10]: g = galois.primitive_element(f, method="random"); g Out[10]: Poly(4x^4 + 3x^3 + 4x^2 + 4x + 1, GF(7)) # Convert the polynomial over GF(7) into an element of GF(7^5) In [11]: g = GF(int(g)); g Out[11]: GF(4x^4 + 3x^3 + 4x^2 + 4x + 1, order=7^5) In [12]: g.multiplicative_order() == GF.order - 1 Out[12]: True