- galois.is_primitive_root(g: int, n: int) bool
Determines if \(g\) is a primitive root modulo \(n\).
See also
Notes¶
The integer \(g\) is a primitive root modulo \(n\) if the totatives of \(n\), the positive integers \(1 \le a < n\) that are coprime with \(n\), can be generated by powers of \(g\).
Alternatively said, \(g\) is a primitive root modulo \(n\) if and only if \(g\) is a generator of the multiplicative group of integers modulo \(n\),
\[(\mathbb{Z}/n\mathbb{Z}){^\times} = \{1, g, g^2, \dots, g^{\phi(n)-1}\}\]where \(\phi(n)\) is order of the group.
If \((\mathbb{Z}/n\mathbb{Z}){^\times}\) is cyclic, the number of primitive roots modulo \(n\) is given by \(\phi(\phi(n))\).
Examples¶
In [1]: list(galois.primitive_roots(7)) Out[1]: [3, 5] In [2]: galois.is_primitive_root(2, 7) Out[2]: False In [3]: galois.is_primitive_root(3, 7) Out[3]: True