- galois.Poly.is_square_free() bool
Determines whether the polynomial \(f(x)\) over \(\mathrm{GF}(q)\) is square-free.
Why is this a method and not a property?
This is a method to indicate it is a computationally expensive task.
- Returns:¶
True
if the polynomial is square-free.
Notes¶
A square-free polynomial \(f(x)\) has no irreducible factors with multiplicity greater than one. Therefore, its canonical factorization is
\[f(x) = \prod_{i=1}^{k} g_i(x)^{e_i} = \prod_{i=1}^{k} g_i(x) .\]Examples¶
Generate irreducible polynomials over \(\mathrm{GF}(3)\).
In [1]: GF = galois.GF(3) In [2]: f1 = galois.irreducible_poly(3, 3); f1 Out[2]: Poly(x^3 + 2x + 1, GF(3)) In [3]: f2 = galois.irreducible_poly(3, 4); f2 Out[3]: Poly(x^4 + x + 2, GF(3))
Determine if composite polynomials are square-free over \(\mathrm{GF}(3)\).
In [4]: (f1 * f2).is_square_free() Out[4]: True In [5]: (f1**2 * f2).is_square_free() Out[5]: False