- galois.Poly.is_primitive() bool
Determines whether the polynomial \(f(x)\) over \(\mathrm{GF}(q)\) is primitive.
Why is this a method and not a property?
This is a method to indicate it is a computationally expensive task.
- Returns:¶
True
if the polynomial is primitive.
Notes¶
A degree-\(m\) polynomial \(f(x)\) over \(\mathrm{GF}(q)\) is primitive if it is irreducible and \(f(x) \mid (x^k - 1)\) for \(k = q^m - 1\) and no \(k\) less than \(q^m - 1\).
References¶
Algorithm 4.77 from https://cacr.uwaterloo.ca/hac/about/chap4.pdf
Examples¶
All Conway polynomials are primitive.
In [1]: f = galois.conway_poly(2, 8); f Out[1]: Poly(x^8 + x^4 + x^3 + x^2 + 1, GF(2)) In [2]: f.is_primitive() Out[2]: True In [3]: f = galois.conway_poly(3, 5); f Out[3]: Poly(x^5 + 2x + 1, GF(3)) In [4]: f.is_primitive() Out[4]: True
The irreducible polynomial of \(\mathrm{GF}(2^8)\) for AES is not primitive.
In [5]: f = galois.Poly.Degrees([8, 4, 3, 1, 0]); f Out[5]: Poly(x^8 + x^4 + x^3 + x + 1, GF(2)) In [6]: f.is_irreducible() Out[6]: True In [7]: f.is_primitive() Out[7]: False