- property galois.GF2.primitive_element : FieldArray
A primitive element of the finite field \(\mathrm{GF}(p^m)\).
Notes¶
A primitive element \(\alpha\) is a generator of the multiplicative group \(\mathrm{GF}(p^m)^\times\), which has order \(p^m - 1\). Equivalently, every nonzero field element can be written as \(\alpha^k\) for some integer \(k\).
See also
Examples¶
The smallest primitive element of the prime field \(\mathrm{GF}(31)\).
In [1]: GF = galois.GF(31) In [2]: GF.primitive_element Out[2]: GF(3, order=31)In [3]: GF = galois.GF(31, repr="power") In [4]: GF.primitive_element Out[4]: GF(α, order=31)The smallest primitive element of the extension field \(\mathrm{GF}(5^2)\).
In [5]: GF = galois.GF(5**2) In [6]: GF.primitive_element Out[6]: GF(5, order=5^2)In [7]: GF = galois.GF(5**2, repr="poly") In [8]: GF.primitive_element Out[8]: GF(α, order=5^2)In [9]: GF = galois.GF(5**2, repr="power") In [10]: GF.primitive_element Out[10]: GF(α, order=5^2)