- property galois.GF2.normal_elements : FieldArray
All normal elements of the finite field \(\mathrm{GF}(p^m)\).
Notes¶
A normal element \(\beta\) is one whose Frobenius conjugates
\[ \{\beta, \beta^p, \beta^{p^2}, \dots, \beta^{p^{m-1}}\} \]form a basis of \(\mathrm{GF}(p^m)\) over its base field \(\mathrm{GF}(p)\). Prime fields (\(m = 1\)) have no nontrivial normal elements.
See also
Examples¶
All normal elements of the extension field \(\mathrm{GF}(5^2)\) in lexicographical order.
In [1]: GF = galois.GF(5**2) In [2]: GF.normal_elements Out[2]: [GF(5, order=5^2), GF(6, order=5^2), GF(8, order=5^2), GF(9, order=5^2), GF(10, order=5^2), GF(11, order=5^2), GF(12, order=5^2), GF(13, order=5^2), GF(15, order=5^2), GF(17, order=5^2), GF(18, order=5^2), GF(19, order=5^2), GF(20, order=5^2), GF(21, order=5^2), GF(22, order=5^2), GF(24, order=5^2)]In [3]: GF = galois.GF(5**2, repr="poly") In [4]: GF.normal_elements Out[4]: [GF(α, order=5^2), GF(α + 1, order=5^2), GF(α + 3, order=5^2), GF(α + 4, order=5^2), GF(2α, order=5^2), GF(2α + 1, order=5^2), GF(2α + 2, order=5^2), GF(2α + 3, order=5^2), GF(3α, order=5^2), GF(3α + 2, order=5^2), GF(3α + 3, order=5^2), GF(3α + 4, order=5^2), GF(4α, order=5^2), GF(4α + 1, order=5^2), GF(4α + 2, order=5^2), GF(4α + 4, order=5^2)]In [5]: GF = galois.GF(5**2, repr="power") In [6]: GF.normal_elements Out[6]: [GF(α, order=5^2), GF(α^22, order=5^2), GF(α^2, order=5^2), GF(α^17, order=5^2), GF(α^7, order=5^2), GF(α^8, order=5^2), GF(α^4, order=5^2), GF(α^23, order=5^2), GF(α^19, order=5^2), GF(α^11, order=5^2), GF(α^16, order=5^2), GF(α^20, order=5^2), GF(α^13, order=5^2), GF(α^5, order=5^2), GF(α^14, order=5^2), GF(α^10, order=5^2)]