- class property galois.FieldArray.primitive_element : FieldArray
A primitive element \(\alpha\) of the Galois field \(\mathrm{GF}(p^m)\).
Notes¶
A primitive element is a multiplicative generator of the field, such that \(\mathrm{GF}(p^m) = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{p^m - 2}\}\). A primitive element is a root of the primitive polynomial \(f(x)\), such that \(f(\alpha) = 0\) over \(\mathrm{GF}(p^m)\).
Examples¶
The smallest primitive element of the prime field \(\mathrm{GF}(31)\).
In [1]: GF = galois.GF(31) In [2]: GF.primitive_element Out[2]: GF(3, order=31)
In [3]: GF = galois.GF(31, repr="power") In [4]: GF.primitive_element Out[4]: GF(α, order=31)
The smallest primitive element of the extension field \(\mathrm{GF}(5^2)\).
In [5]: GF = galois.GF(5**2) In [6]: GF.primitive_element Out[6]: GF(5, order=5^2)
In [7]: GF = galois.GF(5**2, repr="poly") In [8]: GF.primitive_element Out[8]: GF(α, order=5^2)
In [9]: GF = galois.GF(5**2, repr="power") In [10]: GF.primitive_element Out[10]: GF(α, order=5^2)