- property galois.FieldArray.normal_element : FieldArray | None
A normal element of the finite field \(\mathrm{GF}(p^m)\).
Notes¶
A normal element \(\beta\) is one whose Frobenius conjugates
\[ \{\beta, \beta^p, \beta^{p^2}, \dots, \beta^{p^{m-1}}\} \]form a basis of \(\mathrm{GF}(p^m)\) over its base field \(\mathrm{GF}(p)\). Prime fields (\(m = 1\)) have no nontrivial normal elements.
See also
Examples¶
The smallest normal element of the extension field \(\mathrm{GF}(5^2)\).
In [1]: GF = galois.GF(5**2) In [2]: GF.normal_element Out[2]: GF(5, order=5^2)In [3]: GF = galois.GF(5**2, repr="poly") In [4]: GF.normal_element Out[4]: GF(α, order=5^2)In [5]: GF = galois.GF(5**2, repr="power") In [6]: GF.normal_element Out[6]: GF(α, order=5^2)