-
galois.FieldArray.log(base: ElementLike | ArrayLike | None =
None) int | ndarray Computes the discrete logarithm of the array \(x\) base \(\beta\).
- Parameters:¶
- base: ElementLike | ArrayLike | None =
None¶ A primitive element or elements \(\beta\) of the finite field that is the base of the logarithm. The default is
Nonewhich usesprimitive_element.Slower performance
If the
FieldArrayis configured to use lookup tables (ufunc_mode == "jit-lookup") and this method is invoked with a base different fromprimitive_element, then explicit calculation will be used (which is slower than using lookup tables).
- base: ElementLike | ArrayLike | None =
- Returns:¶
An integer array \(i\) of powers of \(\beta\) such that \(\beta^i = x\). The return array shape obeys NumPy broadcasting rules.
Examples¶
Compute the logarithm of \(x\) with default base \(\alpha\), which is the specified primitive element of the field.
In [1]: GF = galois.GF(3**5) In [2]: alpha = GF.primitive_element; alpha Out[2]: GF(3, order=3^5) In [3]: x = GF.Random(10, low=1); x Out[3]: GF([199, 158, 48, 181, 62, 234, 96, 157, 5, 173], order=3^5) In [4]: i = x.log(); i Out[4]: array([164, 145, 139, 135, 93, 133, 50, 176, 5, 213]) In [5]: assert np.array_equal(alpha ** i, x)In [6]: GF = galois.GF(3**5, repr="poly") In [7]: alpha = GF.primitive_element; alpha Out[7]: GF(α, order=3^5) In [8]: x = GF.Random(10, low=1); x Out[8]: GF([ α^4 + α^3 + 2, α^4 + α^3 + 2α^2 + α + 2, α^4 + α^2 + 1, 2α^4 + α^2 + 2α + 1, α^3 + 2α^2 + 2α + 1, 2α^2 + 2α + 1, 2α^4 + 2α^2, α^4 + 2, α^4 + 2α^3 + 2α^2 + α, 2α^4 + 2], order=3^5) In [9]: i = x.log(); i Out[9]: array([119, 218, 148, 111, 79, 88, 169, 120, 80, 68]) In [10]: assert np.array_equal(alpha ** i, x)In [11]: GF = galois.GF(3**5, repr="power") In [12]: alpha = GF.primitive_element; alpha Out[12]: GF(α, order=3^5) In [13]: x = GF.Random(10, low=1); x Out[13]: GF([α^142, α^218, α^33, α^199, α^108, α^113, α^70, α^8, α^128, α^5], order=3^5) In [14]: i = x.log(); i Out[14]: array([142, 218, 33, 199, 108, 113, 70, 8, 128, 5]) In [15]: assert np.array_equal(alpha ** i, x)With the default argument,
numpy.log()andlog()are equivalent.In [16]: assert np.array_equal(np.log(x), x.log())Compute the logarithm of \(x\) with a different base \(\beta\), which is another primitive element of the field.
In [17]: beta = GF.primitive_elements[-1]; beta Out[17]: GF(242, order=3^5) In [18]: i = x.log(beta); i Out[18]: array([ 6, 166, 165, 5, 100, 15, 20, 106, 2, 157]) In [19]: assert np.array_equal(beta ** i, x)In [20]: beta = GF.primitive_elements[-1]; beta Out[20]: GF(2α^4 + 2α^3 + 2α^2 + 2α + 2, order=3^5) In [21]: i = x.log(beta); i Out[21]: array([ 6, 166, 165, 5, 100, 15, 20, 106, 2, 157]) In [22]: assert np.array_equal(beta ** i, x)In [23]: beta = GF.primitive_elements[-1]; beta Out[23]: GF(α^185, order=3^5) In [24]: i = x.log(beta); i Out[24]: array([ 6, 166, 165, 5, 100, 15, 20, 106, 2, 157]) In [25]: assert np.array_equal(beta ** i, x)Compute the logarithm of a single finite field element base all of the primitive elements of the field.
In [26]: x = GF.Random(low=1); x Out[26]: GF(97, order=3^5) In [27]: bases = GF.primitive_elements In [28]: i = x.log(bases); i Out[28]: array([159, 97, 177, 19, 79, 85, 87, 107, 109, 125, 149, 53, 113, 59, 163, 23, 157, 131, 67, 183, 155, 161, 29, 197, 117, 119, 195, 111, 75, 63, 153, 17, 203, 211, 73, 239, 27, 95, 21, 25, 1, 129, 167, 137, 45, 81, 43, 223, 217, 241, 51, 13, 57, 237, 151, 229, 91, 71, 207, 15, 37, 9, 193, 41, 105, 173, 7, 89, 191, 83, 199, 181, 179, 127, 61, 103, 139, 93, 147, 141, 221, 175, 215, 35, 169, 135, 31, 213, 233, 185, 123, 145, 3, 227, 39, 171, 219, 205, 133, 101, 115, 49, 47, 235, 69, 5, 225, 189, 65, 201]) In [29]: assert np.all(bases ** i == x)In [30]: x = GF.Random(low=1); x Out[30]: GF(α^3 + 2, order=3^5) In [31]: bases = GF.primitive_elements In [32]: i = x.log(bases); i Out[32]: array([ 15, 137, 3, 189, 149, 145, 63, 211, 129, 199, 183, 5, 207, 1, 93, 25, 97, 195, 157, 241, 179, 175, 21, 151, 43, 203, 233, 47, 71, 79, 19, 29, 147, 61, 153, 123, 103, 219, 107, 185, 201, 35, 171, 191, 91, 67, 173, 53, 57, 41, 87, 193, 83, 205, 101, 49, 141, 235, 225, 111, 177, 115, 73, 13, 51, 167, 197, 223, 155, 227, 69, 81, 163, 117, 161, 133, 109, 59, 23, 27, 135, 85, 139, 17, 89, 31, 181, 221, 127, 159, 39, 105, 119, 131, 95, 7, 217, 65, 113, 215, 125, 169, 9, 45, 75, 37, 213, 237, 239, 229]) In [33]: assert np.all(bases ** i == x)In [34]: x = GF.Random(low=1); x Out[34]: GF(α^39, order=3^5) In [35]: bases = GF.primitive_elements In [36]: i = x.log(bases); i Out[36]: array([ 39, 211, 153, 201, 97, 135, 67, 113, 45, 227, 137, 13, 151, 51, 145, 65, 107, 23, 21, 191, 175, 213, 103, 199, 15, 189, 25, 219, 233, 157, 1, 27, 237, 207, 59, 223, 171, 37, 133, 239, 87, 91, 9, 61, 43, 29, 111, 41, 3, 155, 81, 163, 119, 49, 69, 79, 173, 127, 101, 95, 73, 57, 93, 179, 181, 47, 125, 241, 161, 203, 131, 17, 85, 159, 225, 7, 235, 105, 205, 167, 109, 221, 71, 141, 183, 129, 35, 139, 185, 123, 53, 31, 19, 147, 5, 115, 177, 169, 197, 75, 83, 149, 217, 117, 195, 193, 215, 229, 89, 63]) In [37]: assert np.all(bases ** i == x)