property galois.BCH.is_primitive : bool

Indicates if the BCH code is primitive, meaning \(n = q^m - 1\).

Examples

Construct a binary primitive \(\textrm{BCH}(15, 7)\) code.

In [1]: bch = galois.BCH(15, 7); bch
Out[1]: <BCH Code: [15, 7, 5] over GF(2)>

In [2]: assert bch.is_primitive

In [3]: assert bch.n == bch.extension_field.order - 1

Construct a non-primitive \(\textrm{BCH}(13, 7)\) code over \(\mathrm{GF}(3)\).

In [4]: bch = galois.BCH(13, 7, field=galois.GF(3)); bch
Out[4]: <BCH Code: [13, 7, 4] over GF(3)>

In [5]: assert not bch.is_primitive

In [6]: assert not bch.n == bch.extension_field.order - 1