- property galois.BCH.extension_field : type[FieldArray]
The Galois field \(\mathrm{GF}(q^m)\) that defines the BCH syndrome arithmetic.
Examples¶
Construct a binary \(\textrm{BCH}(15, 7)\) code.
In [1]: bch = galois.BCH(15, 7); bch Out[1]: <BCH Code: [15, 7, 5] over GF(2)> In [2]: bch.extension_field Out[2]: <class 'galois.GF(2^4)'> In [3]: print(bch.extension_field.properties) Galois Field: name: GF(2^4) characteristic: 2 degree: 4 order: 16 irreducible_poly: x^4 + x + 1 is_primitive_poly: True primitive_element: x
Construct a \(\textrm{BCH}(26, 14)\) code over \(\mathrm{GF}(3)\).
In [4]: bch = galois.BCH(26, 14, field=galois.GF(3)); bch Out[4]: <BCH Code: [26, 14, 7] over GF(3)> In [5]: bch.extension_field Out[5]: <class 'galois.GF(3^3)'> In [6]: print(bch.extension_field.properties) Galois Field: name: GF(3^3) characteristic: 3 degree: 3 order: 27 irreducible_poly: x^3 + 2x + 1 is_primitive_poly: True primitive_element: x