Arrays

class galois.Array(numpy.ndarray)

An abstract ndarray subclass over a Galois field or Galois ring.

galois.typing.ArrayLike

A Union representing objects that can be coerced into a Galois field array.

galois.typing.DTypeLike

A Union representing objects that can be coerced into a NumPy data type.

galois.typing.ElementLike

A Union representing objects that can be coerced into a Galois field element.

galois.typing.IterableLike

A Union representing iterable objects that can be coerced into a Galois field array.

galois.typing.ShapeLike

A Union representing objects that can be coerced into a NumPy shape tuple.

Galois fields

class galois.FieldArray(galois.Array)

An abstract ndarray subclass over \(\mathrm{GF}(p^m)\).

class galois.GF2(galois.FieldArray)

A FieldArray subclass over \(\mathrm{GF}(2)\).

galois.Field(order: int, *, ...) type[FieldArray]
galois.Field(characteristic: int, degree, ...) type[FieldArray]

Alias of GF().

galois.GF(order: int, *, ...) type[FieldArray]
galois.GF(characteristic: int, degree: int, ...) type[FieldArray]

Creates a FieldArray subclass for \(\mathrm{GF}(p^m)\).

Primitive elements

galois.primitive_element(irreducible_poly: Poly, ...) Poly

Finds a primitive element \(g\) of the Galois field \(\mathrm{GF}(q^m)\) with degree-\(m\) irreducible polynomial \(f(x)\) over \(\mathrm{GF}(q)\).

galois.primitive_elements(irreducible_poly: Poly) list[Poly]

Finds all primitive elements \(g\) of the Galois field \(\mathrm{GF}(q^m)\) with degree-\(m\) irreducible polynomial \(f(x)\) over \(\mathrm{GF}(q)\).

galois.is_primitive_element(element: PolyLike, ...) bool

Determines if \(g\) is a primitive element of the Galois field \(\mathrm{GF}(q^m)\) with degree-\(m\) irreducible polynomial \(f(x)\) over \(\mathrm{GF}(q)\).

Polynomials

class galois.Poly

A univariate polynomial \(f(x)\) over \(\mathrm{GF}(p^m)\).

galois.typing.PolyLike

A Union representing objects that can be coerced into a polynomial.

See also

The Number theory section contains many functions that operate on polynomials.

Irreducible polynomials

galois.irreducible_poly(order: int, degree: int, ...) Poly

Returns a monic irreducible polynomial \(f(x)\) over \(\mathrm{GF}(q)\) with degree \(m\).

galois.irreducible_polys(order: int, degree, ...) Iterator[Poly]

Iterates through all monic irreducible polynomials \(f(x)\) over \(\mathrm{GF}(q)\) with degree \(m\).

Primitive polynomials

galois.conway_poly(characteristic: int, degree: int, ...) Poly

Returns the Conway polynomial \(C_{p,m}(x)\) over \(\mathrm{GF}(p)\) with degree \(m\).

galois.matlab_primitive_poly(characteristic: int, degree) Poly

Returns Matlab’s default primitive polynomial \(f(x)\) over \(\mathrm{GF}(p)\) with degree \(m\).

galois.primitive_poly(order: int, degree: int, ...) Poly

Returns a monic primitive polynomial \(f(x)\) over \(\mathrm{GF}(q)\) with degree \(m\).

galois.primitive_polys(order: int, degree, ...) Iterator[Poly]

Iterates through all monic primitive polynomials \(f(x)\) over \(\mathrm{GF}(q)\) with degree \(m\).

Interpolating polynomials

galois.lagrange_poly(x: Array, y: Array) Poly

Computes the Lagrange interpolating polynomial \(L(x)\) such that \(L(x_i) = y_i\).

Forward error correction

class galois.BCH

A general \(\textrm{BCH}(n, k)\) code over \(\mathrm{GF}(q)\).

class galois.ReedSolomon

A general \(\textrm{RS}(n, k)\) code over \(\mathrm{GF}(q)\).

Linear sequences

class galois.FLFSR

A Fibonacci linear-feedback shift register (LFSR).

class galois.GLFSR

A Galois linear-feedback shift register (LFSR).

galois.berlekamp_massey(sequence: FieldArray, ...) Poly
galois.berlekamp_massey(sequence: FieldArray, output) FLFSR
galois.berlekamp_massey(sequence: FieldArray, output) GLFSR

Finds the minimal polynomial \(c(x)\) that produces the linear recurrent sequence \(y\).

Transforms

galois.intt(X: ArrayLike, ...) FieldArray

Computes the Inverse Number-Theoretic Transform (INTT) of \(X\).

galois.ntt(x: ArrayLike, size: int | None = None, ...) FieldArray

Computes the Number-Theoretic Transform (NTT) of \(x\).

Number theory

Divisibility

galois.are_coprime(*values: int) bool
galois.are_coprime(*values: Poly) bool

Determines if the arguments are pairwise coprime.

galois.egcd(a: int, b: int) tuple[int, int, int]
galois.egcd(...) tuple[galois._polys._poly.Poly, galois._polys._poly.Poly, galois._polys._poly.Poly]

Finds the multiplicands of \(a\) and \(b\) such that \(a s + b t = \mathrm{gcd}(a, b)\).

galois.euler_phi(n: int) int

Counts the positive integers (totatives) in \([1, n)\) that are coprime to \(n\).

galois.gcd(a: int, b: int) int
galois.gcd(a: Poly, b: Poly) Poly

Finds the greatest common divisor of \(a\) and \(b\).

galois.lcm(*values: int) int
galois.lcm(*values: Poly) Poly

Computes the least common multiple of the arguments.

galois.prod(*values: int) int
galois.prod(*values: Poly) Poly

Computes the product of the arguments.

galois.totatives(n: int) list[int]

Returns the positive integers (totatives) in \([1, n)\) that are coprime to \(n\).

Congruences

galois.carmichael_lambda(n: int) int

Finds the smallest positive integer \(m\) such that \(a^m \equiv 1\ (\textrm{mod}\ n)\) for every integer \(a\) in \([1, n)\) that is coprime to \(n\).

galois.crt(remainders: Sequence[int], moduli: Sequence[int]) int
galois.crt(remainders: Sequence[Poly], moduli) Poly

Solves the simultaneous system of congruences for \(x\).

galois.jacobi_symbol(a: int, n: int) int

Computes the Jacobi symbol \((\frac{a}{n})\).

galois.kronecker_symbol(a: int, n: int) int

Computes the Kronecker symbol \((\frac{a}{n})\). The Kronecker symbol extends the Jacobi symbol for all \(n\).

galois.legendre_symbol(a: int, p: int) int

Computes the Legendre symbol \((\frac{a}{p})\).

galois.is_cyclic(n: int) bool

Determines whether the multiplicative group \((\mathbb{Z}/n\mathbb{Z}){^\times}\) is cyclic.

Primitive roots

galois.primitive_root(n: int, start: int = 1, ...) int

Finds a primitive root modulo \(n\) in the range \([\textrm{start}, \textrm{stop})\).

galois.primitive_roots(n: int, start: int = 1, ...) Iterator[int]

Iterates through all primitive roots modulo \(n\) in the range \([\textrm{start}, \textrm{stop})\).

galois.is_primitive_root(g: int, n: int) bool

Determines if \(g\) is a primitive root modulo \(n\).

Integer arithmetic

galois.ilog(n: int, b: int) int

Computes \(x = \lfloor\textrm{log}_b(n)\rfloor\) such that \(b^x \le n < b^{x + 1}\).

galois.iroot(n: int, k: int) int

Computes \(x = \lfloor n^{\frac{1}{k}} \rfloor\) such that \(x^k \le n < (x + 1)^k\).

galois.isqrt(n: int) int

Computes \(x = \lfloor\sqrt{n}\rfloor\) such that \(x^2 \le n < (x + 1)^2\).

Factorization

Prime factorization

galois.factors(value: int) tuple[list[int], list[int]]
galois.factors(...) tuple[list[galois._polys._poly.Poly], list[int]]

Computes the prime factors of a positive integer or the irreducible factors of a non-constant, monic polynomial.

Composite factorization

galois.divisor_sigma(n: int, k: int = 1) int

Returns the sum of \(k\)-th powers of the positive divisors of \(n\).

galois.divisors(n: int) list[int]

Computes all positive integer divisors \(d\) of the integer \(n\) such that \(d \mid n\).

Specific factorization algorithms

galois.perfect_power(n: int) tuple[int, int]

Returns the integer base \(c\) and exponent \(e\) of \(n = c^e\). If \(n\) is not a perfect power, then \(c = n\) and \(e = 1\).

galois.pollard_p1(n: int, B: int, B2: int | None = None) int

Attempts to find a non-trivial factor of \(n\) if it has a prime factor \(p\) such that \(p-1\) is \(B\)-smooth.

galois.pollard_rho(n: int, c: int = 1) int

Attempts to find a non-trivial factor of \(n\) using cycle detection.

galois.trial_division(n, ...) tuple[list[int], list[int], int]

Finds all the prime factors \(p_i^{e_i}\) of \(n\) for \(p_i \le B\).

Primes

Prime number generation

galois.kth_prime(k: int) int

Returns the \(k\)-th prime, where \(k = \{1,2,3,4,\dots\}\) for primes \(p = \{2,3,5,7,\dots\}\).

galois.mersenne_exponents(n: int | None = None) list[int]

Returns all known Mersenne exponents \(e\) for \(e \le n\).

galois.mersenne_primes(n: int | None = None) list[int]

Returns all known Mersenne primes \(p\) for \(p \le 2^n - 1\).

galois.next_prime(n: int) int

Returns the nearest prime \(p\), such that \(p > n\).

galois.prev_prime(n: int) int

Returns the nearest prime \(p\), such that \(p \le n\).

galois.primes(n: int) list[int]

Returns all primes \(p\) for \(p \le n\).

galois.random_prime(bits: int, seed: int | None = None) int

Returns a random prime \(p\) with \(b\) bits, such that \(2^b \le p < 2^{b+1}\).

Primality tests

galois.is_composite(n: int) bool

Determines if \(n\) is composite.

galois.is_perfect_power(n: int) bool

Determines if \(n\) is a perfect power \(n = c^e\) with \(e > 1\).

galois.is_powersmooth(n: int, B: int) bool

Determines if the integer \(n\) is \(B\)-powersmooth.

galois.is_prime(n: int) bool

Determines if \(n\) is prime.

galois.is_prime_power(n: int) bool

Determines if \(n\) is a prime power \(n = p^k\) for prime \(p\) and \(k \ge 1\).

galois.is_smooth(n: int, B: int) bool

Determines if the integer \(n\) is \(B\)-smooth.

galois.is_square_free(value: int) bool
galois.is_square_free(value: Poly) bool

Determines if an integer or polynomial is square-free.

Specific primality tests

galois.fermat_primality_test(n: int, ...) bool

Determines if \(n\) is composite using Fermat’s primality test.

galois.miller_rabin_primality_test(n: int, a: int = 2, ...) bool

Determines if \(n\) is composite using the Miller-Rabin primality test.

Configuration

galois.get_printoptions() dict[str, Any]

Returns the current print options for the package. This function is the galois equivalent of numpy.get_printoptions().

galois.printoptions(**kwargs) Generator[None, None, None]

A context manager to temporarily modify the print options for the package. This function is the galois equivalent of numpy.printoptions().

galois.set_printoptions(coeffs: 'desc' | 'asc' = 'desc')

Modifies the print options for the package. This function is the galois equivalent of numpy.set_printoptions().


Last update: Aug 06, 2023